

José Maria Campos Donato

CAN WEB APPLICATIONS WITH ALL THE RIGHT

VITAMINS BE AS RELIABLE AS NATIVE

APPLICATIONS?

Dissertation in the context of the Master in Informatics Security
advised by Professor Nuno Antunes and Naghmeh Ivaki and presented to

Faculty of Sciences and Technology / Department of Informatics Engineering.

July 2021

C
A

N
 W

EB
 A

P
P

LI
C

A
TI

O
N

S
W

IT
H

 A
LL

 T
H

E
R

IG
H

T
V

IT
A

M
IN

S
B

E
A

S
R

EL
IA

B
LE

 A
S

N
A

TI
V

E

A
P

P
LI

C
A

TI
O

N
S?

Jo

sé
 M

ar
ia

 C
am

p
o

s
D

o
n

at
o

Faculty of Sciences and Technology
Department of Informatics Engineering

Can web applications with all the
right vitamins be as reliable as

native applications?

José Maria Campos Donato

Dissertation in the context of the Master in Informatics Security
advised by Prof. Dr. Nuno Antunes and Dr. Naghmeh Ivaki and presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

July 2021

This work is within the informatics security specialization area and was carried out in the
Software and Systems Engineering (SSE) Group of the Centre for Informatics and Systems
of the University of Coimbra (CISUC).

This work is partially supported by the project METRICS: Monitoring and Measuring the
Trustworthiness of Critical Cloud Systems (POCI-01-0145-FEDER-032504), co-funded by
the Portuguese Foundation for Science and Technology (FCT) and by the Fundo Europeu
de Desenvolvimento Regional (FEDER) through Portugal 2020 - Programa Operacional
Competitividade e Internacionalização (POCI).
It is also supported by the project TalkConnect: Voice Architecture over Distributed
Network (POCI-01-0247-FEDER-039676), co-financed by the ERDF, through Portugal 2020
(PT2020), and by COMPETE2020 and FCT.

This work is being supervised by Professor Nuno Manuel dos Santos Antunes, Assistant
Professor at the Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra and by Doctor Naghmeh Ramezani Ivaki, Re-
searcher at the Centre for Informatics and Systems (CISUC) of the Faculty of Sciences and
Technology of the University of Coimbra.

i

To my mother and my grandpa, everything I do is to make you both proud.

Acknowledgements

I would like to start by thanking Professor Nuno Antunes first for all the professional
knowledge, but most importantly for all the personal wisdom. Thank you for the life lessons
that you taught me. Dr. Naghmeh Ivaki, thank you for the guidance and uninterrupted
motivation.

To my family, Paulo and Severine, Tiz and Ale, João e Sara for keeping me sane during
this lonely year. And, of course, to our two beloved dogs that accompanied us over the
last years.

To my Aunt Nani, my Grandma Bety, and my cousin Francisco, who are always available
for me no matter the circumstances.

To my closest friends, Maria Inês, Barros, Brink, Martinho and Guilhon, for the good
laughs and the few but great get-togethers.

Finally, to my kind and beautiful girlfriend and her amazing and caring family. Thank
you, Rita, for all the support, nothing would be possible without you. I am sure I could
not pass through chapter 1 without your continuous support and love.

v

This page is intentionally left blank.

Abstract

During the last decade, the gap between native, hybrid, and web
applications has been reducing. Push notifications, offline fallback,
and other features enabled native-like applications that work dir-
ectly on the browser. Since they can be accessed from the browser,
web applications are not limited to a certain platform, which bene-
fits both end-users and developers. Different types of development
tools to produce applications are constantly and rapidly emerging.
When engineers need to develop a native or web application, they
are overwhelmed by the huge diversity of alternatives and lack the
means to choose the solution that best fits their needs.

In this work, we propose a novel framework to assess different
development tools according to certain properties such as per-
formance, reliability, and dependability. As it is not feasible to
compare the development tools directly, we propose comparing
them through representative applications. The framework defines
the components and procedures required to define concrete bench-
marks.

To demonstrate the applicability of the proposed framework, it was
instantiated in a concrete benchmark focused on the performance
of entertainment and utility applications developed with JavaS-
cript tools and Kotlin as a native reference. For this, we defined a
representative set of features that each application must implement
based on an analysis of popular apps. The relevant metrics to char-
acterize performance were identified. For each tool, an application
was developed with the defined set of features. A benchmarking
campaign was executed, with the help of a supporting tool that
automates the functional tests and collects the metrics. The cam-
paign results were analyzed to compare the applications and the
development tools that produced them.

The results show that the framework can be used to assess and
compare the development tools. We observed that even though
Ionic uses more Memory and CPU than the native applications,
it was the fastest to complete the tests. The observed differences
between Expo and React Native are not significant, meaning that
Expo is able to ease development and extend the cross-platform
development without compromising performance. Finally, the res-
ults confirmed that web applications are already a competitive
alternative in most mobile application scenarios.

Keywords

JavaScript Frameworks, Benchmarking, Android, Mobile applica-
tions, Native applications, Web applications

vii

This page is intentionally left blank.

Resumo

Ao longo da última década, as diferenças entre as aplicações nativas,
híbridas e web têm vindo a diminuir. Notificações, usabilidade
mesmo sem conexão à internet, e outras funcionalidades permitiram
a existência de aplicações que funcionam diretamente através do
browser como se de nativas se tratasse. Dado que são acedidas
pelo browser, estas não ficam limitadas a uma certa plataforma, o
que constitui uma vantagem tanto para os utilizadores como para
programadores. Para além disso, as ferramentas para desenvolver
aplicações web e nativas têm vindo a aumentar exponencialmente
e são hoje muito diversas. Consequentemente, os desenvolvedores
sentem-se sufocados com tal diversidade e não têm meios para
avaliar qual a melhorar solução para as suas necessidades.

Neste trabalho é proposta uma framework para avaliar e com-
parar diferentes ferramentas de desenvolvimento, de acordo com
certas propriedades, tais como performance, e confiabilidade. Dado
que não é viável comparar as ferramentas diretamente, propomos
compará-las através de aplicações representativas. Esta framework
define um conjunto de components e procedimentos necessários
para definir benchmarks concretos.

Para demonstrar a aplicabilidade da framework, ela foi instanciada
num benchmark concreto focado na performance de aplicações de
utilidade e entertenimento desenvolvidas com ferramentas JavaS-
cript e Kotlin como referência nativa. Definimos um conjunto
representativo de funcionalidades que cada aplicação deve imple-
mentar com base na análise de aplicações populares. Identificámos
métricas relevantes para definir a performance. Para cada ferra-
menta, uma aplicação foi desenvolvida com o conjunto de fun-
cionalidades. Uma campanha de benchmark foi executada com o
suporte de uma ferramenta para automatizar testes funcionais e re-
colher as métricas. Os resultados desta campanha foram analisados
para comparar as aplicações e as ferramentas que as produziram.

Os resultados mostram que a framework pode de facto ser utilizada
para avaliar e comparar diferentes ferramentas de desenvolvimento.
Observámos que Ionic apesar de utilizar mais recursos que as ap-
licações nativas, foi a mais rápida a completar os testes. As difer-
enças observadas entre Expo e React Native não são significantes
o que demonstra que o Expo pode facilitar o desenvolvimento e
suportar ainda mais plataformas sem comprometer a performance.
Finalmente, os resultados confirmam que as aplicações web são já
uma alternativa competitiva na maior parte dos cenários.

Palavras-Chave

Frameworks de JavaScript, Benchmarking, Android, Aplicações
móveis, Aplicações nativas, Applicações web

ix

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Contributions . 4
1.2 Dissertation Structure . 5

2 Background and Related Work 7
2.1 Web Applications . 7
2.2 Native Applications . 11
2.3 Development Tools . 12

2.3.1 Web development tools . 13
2.3.2 Native development tools . 14

2.4 Benchmarking Concepts . 15
2.5 Evaluation of Web and Native Applications 16

2.5.1 Benchmarking web applications . 16
2.5.2 Benchmarking native applications . 19
2.5.3 Benchmarking web and native applications 21
2.5.4 Summary . 22

3 Savery Framework 23
3.1 Preliminary Analysis . 25

3.1.1 Reference App Specification . 25
3.1.2 Development Tools . 25
3.1.3 Metrics . 26

3.2 Development of Applications . 26
3.2.1 Auxiliary Tools . 27
3.2.2 Application Development . 27
3.2.3 Functional Validation . 28

3.3 Benchmark Campaign . 29
3.3.1 Configurations . 29
3.3.2 Workload . 30
3.3.3 Measurements Gathering . 30

3.4 Result Analysis . 31

4 Performance Benchmark of Mobile Development Tools 33
4.1 Preliminary Analysis . 34

4.1.1 Reference Application Specification 34
4.1.2 Selection of development tools . 39
4.1.3 Metrics . 40

4.2 Development of Applications . 42

xi

4.2.1 Implementing the applications . 42
4.2.2 Functional Testing . 44
4.2.3 Auxiliary tools . 45

4.3 Benchmark Campaign . 51
4.3.1 Setup . 51
4.3.2 Configurations . 53
4.3.3 Workload . 53
4.3.4 Measurements Gathering . 56

5 Results and Discussion 59
5.1 Overall results . 60
5.2 Test Duration . 62
5.3 CPU Usage . 64
5.4 RAM Consumption . 65
5.5 Static Measurements . 66
5.6 Threats to Validity . 67

6 Conclusion and Future Work 69

References 70

A Application specification 81

B Example of one of the implementations (preact) that follow the Applic-
ation specification 85

C Configuration file for Testing and Measurement Tool 89

xii

xiii

List of Figures

Figure 2.1 Comparison between web applications and single page applications . 9
Figure 2.2 How Service Workers fit in a Web application 11

Figure 3.1 Overview of the components and steps defined in the Savery Frame-
work. 24

Figure 3.2 Steps for the development of the applications. 27
Figure 3.3 Steps for the development of the applications. 28
Figure 3.4 Steps for the execution of the applications implementing the reference

specification. 29
Figure 3.5 Proposed folder structure to save Campaign results 31

Figure 4.1 Overview of the main functionalities and navigation of the application. 35
Figure 4.2 Example of application layout . 37
Figure 4.3 Authenticated Navigation Bar . 37
Figure 4.4 Unauthenticated Navigation Bar . 37
Figure 4.5 Testing and Measurement Tool command-line interface 50
Figure 4.6 Proposed Benchmark Campaign flow 52
Figure 4.7 Experimental procedure for the benchmarking campaign 53

Figure 5.1 Results Tests Duration (ms) per application. 61
Figure 5.2 Results for CPU Usage (%) per application. 61
Figure 5.3 Results for RAM Consumption (MB) per application. 62
Figure 5.4 Average duration (ms) per test for each application. 63
Figure 5.5 CPU Usage by package (%) per application and test 64
Figure 5.6 RAM Consumption by the system (MB) per application and test . . 65

Figure B.1 Unauthenticated components of preact implementation (web applic-
ation) . 86

Figure B.3 Part 1 of authenticated components of preact implementation (web
application) . 87

Figure B.4 Part 2 of authenticated components of preact implementation (web
application) . 88

xiv

List of Tables

Table 2.1 Related work summary . 22

Table 4.1 Popular applications, download count (in Google Play Store) and their
features . 34

Table 4.2 Summary of components defined in the Reference App Specification . 38
Table 4.3 Summary of the development tools selected to implement the applic-

ations . 40
Table 4.4 Summary of the selected metrics . 41
Table 4.5 Comparison of Popular Automation and Testing Libraries 47
Table 4.6 Automation test suite for warm-up period. 54
Table 4.7 Automation Tests Suites per Component 57
Table 4.8 Package names for gathering measurements of each implementation . 58

Table 5.1 List of Application types and identifiers and summary of the selected
metrics . 59

Table 5.2 Average (and max) results . 60
Table 5.3 Static measurements gathered per application 67

Table A.1 Application elements identifiers and their functional requirements . . 81

xv

This page is intentionally left blank.

Chapter 1

Introduction

During the last decades, smartphones have improved, and their usage came along. In 2019,
there was an estimate of 3.5 billion smartphone users [1], which translates to around 45%
of the world’s total population, with even higher percentages in some countries (e.g., 60%
in China or 79% in USA [2]). This massive adoption leads to continuous improvement
of mobile devices (e.g., regarding their computation power) and, consequently, increased
the requirements for mobile applications. As the need for this type of application and
its complexity are increasing, a grown number of development tools were created and
are still being created to support developers in building new, high quality, and fast mobile
applications. Multiple development tools surged and still keep surging because each author
came forward to solve the same problem (i.e., how to produce applications for mobile
devices or other devices) with different solutions.

Three main types of applications can be developed for mobile devices:

• Native applications: run natively after being installed (e.g., through application
stores). They are typically the primary choice for engineers because they are fast
and work offline. However, when supporting multiple platforms is vital, development
and maintenance become time-consuming as they are tied to the target platform [3].

• Web applications: run directly on a browser, and thus, they can run on all devices
using the same codebase. However, they are not always able to achieve the same per-
formance as native applications or provide offline functionalities, but these problems
are reducing and Progressive Web Applications (PWAs) try to minimize it [4].

• Hybrid applications: run natively, but they are usually built using web techno-
logies and packed into native containers. They enable the development of native
applications for multiple platforms, sometimes at the cost of performance [5].

An example of the increasing adoption of the web applications where native ones usually
dominate is the last announcement from Microsoft. In 24th June of this year, Microsoft
officially announced that Windows 11 Store will include “Win32, UWP, PWA, and now,
Android apps” [6]. This means that Progressive Web Applications, a specific type of web
application, will now be available to install from the same starting point as other more
common native applications in the Windows environment. In the mobile environment, a

1

Chapter 1

similar situation happened in 2020 where “Microsoft Worked with Google to Bring PWAs
to the Play Store” [7]. Although the Windows environment is still different from mobile
environments (e.g., Android or iOS), we are observing a huge adoption of web applications
that may replace native ones in various situations.

When developing an application for mobile devices, developers need to choose an ap-
propriate approach and select an adequate development tool (also called framework) to
implement it. The challenge is that there are countless options (e.g., React Native or
Kotlin for native, React.js or Svelte for web). In the JavaScript ecosystem, this number
is constantly increasing, causing “JavaScript Fatigue” [8]. Although it pushes technologies
forward, developers are overwhelmed with options and do not always know how to choose
the tool for their use cases. Thus, there is a clear need for techniques and tools that
allow assessing different properties of mobile applications’ development tools,
both the ones currently available and the ones that are yet to appear, to help developers
decide which are the best solutions based on their requirements.

Several works in the literature evaluated both web and/or native applications (detailed
in Section 2.5). However, all of them had at least one of the following limitations: i) a
lack of representative features (i.e., the implemented features by the applications under
test were few and/or were not features that are expected in mobile applications); ii) a
lack of representative metrics (i.e., the metrics gathered had no impact on the end-user’s
day-to-day usage); iii) only compared few development tools from the same environment
(e.g., they did not compare native applications against web applications).

This study proposes a new framework for assessing different mobile application
development tools from different environments considering several properties, such as
performance, reliability, and security. As it is not feasible to compare the development tools
directly, we propose implementing applications with a representative set of features. These
applications are then executed and submitted to an automated testing procedure during
which metrics are gathered to be used for the comparison of the applications, consequently
allowing to indirectly compare the development tools (or frameworks).

The framework defines the required components and procedures that should be followed
for the development of fair and useful benchmarks. The user must define the target of the
benchmark in terms of the application domain of interest, types of development tools to be
adopted and quality attributes of interest. This target is decisive for specify the feature
selection criteria, the development tool selection criteria and themetric selection
criteria.

Based on these criteria, the user must identify a representative list of features, the de-
velopment tools and the metrics. The applications are implemented with the selected
development tools and must support the representative list of features. These applications
are then submitted to an automated testing procedure during which the selected metrics
are gathered to be used for the comparison of the applications, and that also allow to
compare the development tools indirectly.

To demonstrate the proposed framework, we designed a concrete benchmark to evaluate
and compare multiple popular development tools, used to produce applications for mobile
devices, in terms of performance. For this, we defined a set of features (i.e., our reference
app specification) that users expect to find in a mobile application based on the results of

2

Introduction

the analysis of the most popular applications from Android Store. The following features
are examples that the applications we developed support: i) access to the camera, ii)
geolocation, iii) fetching items from a database to display, iv) infinite carousel, v) operations
around a table, vi) fetching from the cache (more on the reference app specification/features
on Section 4.1.1). Then, we selected a set of popular and recent development tools that are
widely used, including: i) React.js, ii) Svelte, iii) Next.js, iv) Gatsby, v) preact, vi) Ionic,
vii) Expo, viii) React Native, and ix) Kotlin (see Section 4.1.2). Each tool was adopted
to develop one application with the reference set of features, resulting in a set of similar
applications in terms of functionality, although developed with different tools. We selected
several key performance metrics, including RAM consumption, response times, CPU usage,
and application size, to be measured before/during the tests (see Section 4.1.3).

All the applications must pass through a set of functionality tests specific to the imple-
mented features and automated with the help of Appium framework (see Section 4.2.2).
All the applications were developed in-house, but the benchmark is designed to welcome
and incorporate future improvements. This is an open-source project that will be open to
the contribution of the community, inspired in Techempower Benchmarks [9]. Following
the preparation phase, the applications enter the benchmark campaign, where they are
executed over an Android device, and submitted to different workloads while gathering the
measurements.

The experimental results show that our framework can be used effectively to com-
pare different development tools. Between the web applications, tools such as preact
and Next.js that are built with performance as the main requirement show promising
results. We also observed that, in general, the performance of the development tools dif-
fers when different features of applications are executed (e.g., Kotlin uses more CPU and
memory when interacting with native features such as camera, geolocation or the file sys-
tem). This helps developers to choose appropriate development tool depending on the
use case to implement. Another interesting observation is that some development tools
resulted into development of fast applications, but instead consume more memory and
CPU (e.g., implementation with Ionic presented the fastest response times but consumed
more memory and CPU than native applications). This is particularly relevant in the
environment (i.e., mobile devices), in which reduction of energy consumption is of high
importance. In situations where there are few resources, Expo, Kotlin, or React Native
should be used as they are more efficient than the competitors.

The results also showed a difference observed between Expo and React Native that is not
significant, which means that Expo can be a viable alternative to produce React Native
applications without compromising their performance. Regarding web applications, they
are already a viable alternative to the other types of applications, providing faster response
times than the native applications at the cost of more memory and CPU usage. Finally,
in between the web applications, React-based tools are faster and more efficient than
Svelte and between the React-based, Next.js and preact presented the best results in both
resources efficiency and response times, but the differences are minimal.

As future work, we aim to extend the framework to support more development tools,
perform related experiments and keep publishing the results. Moreover, although in our
experiment we focused on performance, we believe that our solution can be extended
to other properties such as security, thus, we aim to define appropriate measures and

3

Chapter 1

necessary workload (or attack load) to explore several properties. We also believe that
the framework could be extended in the future to target other properties more related to
the developer experience when using such development tools. During our experiment, in
addition to performance we also used some metrics to compares the tools in terms developer
experience such as lines of code, dependencies number, etc. (more details on Section 4.1.3).
Moreover, in the future, the framework could be extended to compare the learning curve
of each development tool, or the time to develop a certain application using them.

1.1 Contributions

The main contributions of this work can be summarized as follows:

• A framework to evaluate and compare mobile applications’ development
tools called Savery. This contribution addresses the main issue stated before:
engineers feel overwhelmed when they need to choose a development tool for their
use cases. Savery details steps to define benchmarks that have specific targets in
terms of applications and quality attributes. It considers quality attributes such as
performance, reliability and security, and is prepared to be extensible and open to
the community (detailed in Chapter 3).

• A benchmark to evaluate and compare development tools that can pro-
duce applications for mobile devices, in terms of performance. The frame-
work proposed can only be a good contribution if it is useful for the community.
Hence, another objective was to prove that the framework can indeed be used to
compare different development tools. To achieve this, we instantiated the framework
and conducted a performance benchmark that compared applications with the same
set of representative features implemented using seven different development tools.
This includes several supporting tools developed (detailed in Chapter 4).

• A benchmark campaign that compared some of the most popular devel-
opment tools commonly used to produce applications for mobile devices
(discussed and presented in Chapter 5). Our end goal with this study was to com-
pare popular development tools capable of producing applications for mobile devices.
With the results of the benchmark we were able to compare the different applica-
tions (and, subsequently, the development tools that produced them) in terms of
performance. We were also able to conclude whether web applications are already an
alternative to the native applications and in which situations (detailed in Chapter 5).

• Implementation of different tools to ease usage of the assessment frame-
work. The main challenges of building such benchmarking environment is to keep
its API simple (to be easily used by users to evaluate their applications and also to
easily add new development tools for evaluation) but at the same time sufficiently
complete (to ensure an effective evaluation and comparison). We developed tools to
support the benchmark (detailed in Section 4.2.3).

An additional output of this study is the source code of the applications implemented
with nine different popular development tools. To conduct the benchmark, we had to

4

Introduction

implement the same application with the same set of features using different development
tools. Therefore, we also provide the source code for these implementations using nine
different tools. These implementations can serve as starting point for engineers that may
want to start using a certain development tool supported by our benchmark.

All the outputs of this study are open to the community in the following website and
repository:

– https://savery.dei.uc.pt

– https://github.com/jose-donato/savery

1.2 Dissertation Structure

The remainder of this document is organized as follows:

Chapter 2 provides an overview of web and native applications and a summary about
benchmarking concepts (mainly regarding software systems). Alongside these explanations,
this chapter also presents the related work.

Chapter 3 presents the main contribution of this work: the framework for the assessment
of mobile development tools called Savery. This chapter is divided into four different
sections, matching the four phases of the framework.

Chapter 4 focuses on the performance benchmark conducted to instantiate the proposed
framework. It goes through the different phases and outlines how we implemented the
processes from the framework in detail.

Chapter 5 presents and discusses the results of the benchmark conducted. We break this
chapter into different sections to analyze the applications considering certain aspects (e.g.,
CPU usage, memory consumption). The threats to the validity of the presented results
are presented in the last section of this chapter.

Chapter 6 concludes this work and outlines the main lessons learned throughout the
study as well as the possible future work that can be done.

5

https://savery.dei.uc.pt
https://github.com/jose-donato/savery

This page is intentionally left blank.

Chapter 2

Background and Related Work

This chapter introduces some important concepts regarding web applications, mobile ap-
plications and the main differences between them, which are required to understand the
following chapters. The need for applications for mobile devices is increasing exponen-
tially. This has led to the appearance of many development tools to support developers in
creating new, high-quality, and fast applications. In general, these tools are used to create
two groups of applications: web applications (see Section 2.1) and native applications (see
Section 2.2). Their history has some similarities that will be explained in the following
sections.

After explaining these two types of applications for mobile devices, a brief overview of
benchmarking of software systems is provided in Section 2.4. Finally, studies and public-
ations related to the assessment of these applications are presented in Section 2.5.

2.1 Web Applications

Starting with web applications: in 1989, Tim Berners-Lee proposed the World Wide Web
(WWW) that has evolved exponentially ever since. They started as completely static
websites where each interaction with the website would result in a request to the web
server [10], and in the current time, we have web applications that pose a serious alternative
to native ones. The proof of this is that, as said before, both Microsoft and Google are
setting web applications, namely Progressive Web Applications, at the same starting point
as native ones in their native stores (i.e., Microsoft Store and Google Play Store) [6, 7].

At the current time, developers can choose between two different architectures when de-
veloping web applications [11]:

• Traditional Web Applications (also called Multi-Page Applications or Web 2.0):
HTML pages are pre-rendered on the server and are highly coupled with a remote web
server. Upon request, the server usually returns a page [12]. In this type of applica-
tion, each transition between different pages triggers a browser reload and a request
to the server. Examples of development tools that implement such applications are
Ruby on Rails or Django.

7

Chapter 2

• Single Page Applications (SPAs): applications that are able to rewrite the page
contents. This type of application enables shifting the computation load from the
server-side to the client-side devices due to the continuous increase of application
requirements. They are designed to be highly decoupled from the server. Each
transition does not trigger a browser reload and does not make an additional request
to the server. Examples of tools that produce Single Page Applications are React.js,
Angular, or Vue.js [13].

To better understand how these different approaches appeared, we first need to define what
the Document Object Model (DOM) is. According to Mozilla documentation [14], the
DOM is the “data representation of the objects that comprise the structure and content of
a document on the web”. In simple words, it is a tree that contains all the elements that
are displayed on the devices’ screen. Also, a good analogy from [15] explains that “HTML
is a text, the DOM is an in-memory representation of this text”.

At first, web applications had no complex requirements (prior Web 2.0). The major re-
quirement (and normally simple to achieve) was only to display content on the devices’
screen. Since there was no interactivity, there was no need to manipulate the DOM. At
this time, the servers were doing all the work, and the end devices were only responsible
for displaying the pages and files returned from the servers.

As user requirements increased, applications became more complex and interactive. Between
1999 and 2002, asynchronous JavaScript and XML (i.e., AJAX) appeared and Rich Internet
Applications (i.e., RIA) were born [10]. The web applications shifted to perform requests
after getting the server’s response, which allowed end-users to submit forms and add com-
ments to give some examples [12]. This added more complexity to web applications, but
still far from what is possible in the current days.

When some interactivity was added, JS helpers libraries such as jQuery abstracted inter-
acting with the DOM, and web applications became more responsive.

Web application requirements have increased exponentially during the following years, as
well as the processing power of client-side devices. Thus, Single Page Applications
(SPAs) are born in 2010 to meet these requirements. The first development tools that
could implement SPAs were Backbone.js and Angular.js. This was only possible because
of the constant improvement of end devices (i.e., more precisely, mobile devices), allowing
the shift of the computation from the servers to the end devices.

Instead of performing requests to the server on every interaction, a Single Page Application
will receive a considerable JavaScript bundle from the server on the first request. This
bundle is then responsible for displaying the page’s content on the devices’ screen and
switching it as soon as the users navigate through the application. This resulted in faster
and more responsive applications as it avoids extra trips to the server to grab content for
subsequent pages (that may not differ a lot from the previous ones) [13].

Single Page Applications kept evolving during the last decade and reached a point where
their differences with native applications can be minimal. This can easily be observed
when comparing TikTok website1 with its native applications2.

1tiktok website: https://tiktok.com
2tiktok android application: https://play.google.com/store/apps/details?id=com.zhiliaoapp.musically

8

https://www.tiktok.com/
https://play.google.com/store/apps/details?id=com.zhiliaoapp.musically

Background and Related Work

Fig. 2.1 displays the differences between Traditional Web Applications and Single Page
Applications.

Client browser
Server

(does all the
work)

1. Traditional Web Application (Web 2.0)

 1. Request /index.html

2. Return /index.html

3. Request /about.html

4. Return /about.html

Server does all the work. Receives
pages requests, if a page requires
values that need database queries, the
server queries the database, inserts the
results in the html and only after returns
the page (while the client waits).

2. Single Page Applications

In the first request the server returns a
JavaScript bundle that contains all pages
of the application. Therefore, the
navigation through the pages is
instantaneous since there is no need to
ask the server for them. The client
browser can make subsequent requests
when needs more content or for
submitting forms for example.

Trigger Page
Reload

Client browser
Server

(acts more as
an API)

 1. Request / (first request)

2. Return bundle which contains all
pages

3. Request content from database or
submit form content

4. Return response (usually JSON)

Figure 2.1: Comparison between web applications and single page applications

In Traditional Web Applications, with each request, the user receives a different HTML
page (e.g., when accessing http://example.com/index.html index.html page is returned;
when accessing https://example.com/about.html about.html page is returned) [10] and
every time a new page is received, the browser page reloads. In this scenario, the server
does all the work. Some pages may require content from the database or other sources,
and the server will grab that content and insert it in the HTML before sending it to the
client (of course, the client waits all this time with a blank page in the browser).

Contrary to this approach, in a SPA, with the first request to the server, a bundle is re-
turned, containing all the application pages. When navigating through the application,
instead of going back to the server for each page, the bundle is responsible for manipu-
lating the DOM to show the desired content. Navigating through pages does not trigger
a page reload when using a SPA. In the cases where the application needs a database or
other server-side content, the client can send subsequent HTTP requests, but the user is
never presented with a blank page because this content is normally only a fraction of the
whole page (i.e., the developers of Single Page Applications can display loading spinners,
skeletons, or other UI techniques while fetching content from the server never leaving the
client with a blank page).

It is essential to understand that this is only possible because of the computing power
of mobile devices and the existence of technologies like the DOM. With JavaScript, de-
velopment tools can manipulate the DOM to show the contents they desire. Although
“manipulating the DOM is the heart of modern and interactive web”, this operation is
expensive and can be slow [16]. SPA development tools, i.e., tools that are able to produce
Single Page Applications, differ on how they address this problem (i.e., interaction and
manipulation of DOM). The most common ways to solve this problem are listed below:

• Virtual DOM: React.js created virtual DOM (and later used by Vue.js as well).
In this approach, there is a corresponding virtual node for every DOM node, which is
a lightweight copy of the real one. The virtual nodes have the exact same properties
but no power to change what is on the screen (which is what slows real DOM).
Manipulating the virtual DOM is much faster than the real DOM because nothing
gets drawn to the screen. After a certain change occurs, a process called _diffing
happens. The new virtual DOM is compared to the previous one, and the changed

9

Chapter 2

objects are marked. Then, React updates only these changed objects in the real
DOM (only at this point, the end-user can visually see the changes on the screen).
However, this process can be memory-heavy in some situations since React needs to
store all the different virtual DOM [16].

• Real DOM: Svelte (a framework that is starting to gain some popularity) claims
that the overhead in Virtual DOM comes from diffing and that users should not need
to wait for comparison process (between virtual DOM) to see the changes on the
screen. Therefore, they have solved the DOM manipulation problem by interacting
directly with the real DOM (without any virtual DOM) [17].

• Incremental DOM: Instead of directly interacting with the real DOM, Angular
uses something they called incremental DOM. In this approach, only one virtual
DOM exists, and the tool transverses the DOM tree to look for changes (if so, update
them to the actual DOM). In the virtual DOM, memory is allocated to the whole
tree, while in the incremental DOM, memory is only allocated when DOM nodes
change. It reduces the bundle size and memory footprint seen in development tools
that use multiple virtual DOM [18].

Initially, Search Engine Optimization (SEO) was a problem in Single Page Applications. At
that time, they were only rendered on the client-side (i.e., the bundle was returned to the
client and rendered only when it reached the users’ devices) instead of being rendered on the
server-side (e.g., Ruby on Rails and Django), where pages are pre-rendered before leaving
the server. This resulted in bad SEO results, i.e., it was extremely hard for crawlers (e.g.,
Google) to grab information about the applications and, therefore, for them to appear in
Google’s first results [19]. Also, rendering only the client-side can impact the performance
in bad performance when the bundle sent to the client is huge because the browser needs
to parse it. Later, Single Page Applications development tools were able to optimize
their SEO results and, other meta-frameworks appeared (i.e., frameworks on top of other
frameworks were created). This was the case of Next.js which is used to build server-side
React.js applications [20] or Nuxt.js to build Vue applications. The appearance of these
development tools allowed to split the bundle returned to the client and render some parts
of the pages on the server before sending it to the client.

Single Page Applications allowed the web to become more interactive and, therefore, a
better experience for end-users [21].

The key difference is that sometimes web applications are not able to achieve the same per-
formance as mobile applications or provide offline functionalities, although these problems
are reducing and Progressive Web Applications try to minimize it [4]. Web applications
that could behave as native applications were first introduced by Steve Jobs in 2007 [22].
However, this was quickly forgotten by the Apple team. Later, in 2015, Alex Russell
from Google brought back this concept and named it Progressive Web Applications
(PWA) [23].

Some web development tools may facilitate achieving this, but any web application type
mentioned before can be a PWA as long as it fulfills the following three requirements [24]:

• Service Worker: the brain behind Progressive Web Applications.

10

Background and Related Work

A service worker acts similar to a proxy (i.e., a benign man in the middle) that
can intercept and cache requests. This functionality is displayed in the diagram 2.2
and can be useful to provide offline functionalities or intercepting requests when the
connection is slow to later retry when it becomes stable, using devices’ cache. Service
Workers are event-driven and run on a separate JavaScript thread in the background
which makes push notifications also possible [25]. A brief explanation on how a
service worker may fit in a web application is provided in Fig. 2.2.

• Web Manifest: normally a JavaScript Object Notation (or JSON) file that contains
several key value pairs to describe important application details (e.g., how it looks
when installed) such as the author, version, icons, description, etc.

• HTTPS: the web application must be served over SSL, i.e., an encrypted connection
(unless it is localhost - exception when developing the application).

Web Application WebService Worker

Cache

Request *Request

*Request

Response

Response

Response

*the requests can either go to
web or cache (or both)
depending how the service
worker is implemented

Client (end device) Web server

Figure 2.2: How Service Workers fit in a Web application

The shell of a web application is the part of the application that will never change. This
part is the perfect example of assets that can be cached by service workers, which allow
them to be rendered almost instantly, avoiding extra trips to the server [26].

Another important feature of PWAs is that they can be installed in any device (including
mobile devices). When a user installs a PWA, it can be directly access from the home
screen and the browser UI (i.e., URL bar, favorites, etc.) can optionally be opt-out - only
the application will appear in the screen making a web application a much more native-like
experience.

Even though it is a recent technology, companies are quickly adopting it, and many Pro-
gressive Web Applications are already being used in production [27].

2.2 Native Applications

Native applications differ from web applications in the sense that they are typically tied
to a specific platform (e.g., Android or iOS), whereas web applications can run on any

11

Chapter 2

platform with a web browser.

Native applications run natively after being installed (e.g., through application stores).
They are typically the primary choice for engineers to build an application for mobile
devices, as they are fast and work offline. However, when the ability to support multiple
platforms is vital, development and maintenance become time-consuming and expensive
as they are tied to the target platform[3] (e.g., Swift to produce an application for iOS
devices, Kotlin to produce the same application for Android devices).

This leads up to the appearance of cross-platform tools (or CPTs), i.e., development tools
that allow to build native applications for multiple platforms from a single codebase (i.e.,
from one source code), sometimes at the cost of performance [3]. Hybrid tools are also a
subset of CPT, and they wrap web applications into native views (e.g., Ionic).

Hence, the tools to develop native applications can also be separated into different cat-
egories:

• Native Tools: to develop mobile applications for particular platforms (e.g., Android
or iOS). The languages used are usually only supported by those particular platforms
(e.g., Kotlin for Android or Swift for iOS). Users/companies normally face a major
challenge: to reach all end-users, several applications should be implemented (one
per platform), which is expensive and time-consuming [28].

• Cross-Platform Tools: include the same codebase that produce applications for
multiple platforms [3].

– Hybrid tools: normally websites packed into containers (i.e. web views) that
emulate software behavior for every platform (e.g., Ionic) [29]. Allow developers
with a web background to build native applications for multiple platforms (e.g.,
Android and iOS).

– Native-based tools: output native applications but come from one single
codebase (e.g., Flutter, React Native) [30]. These type of tools try to achieve the
performance of fully native tools while not being tied to a particular platform.

As we have seen so far, both web applications and native applications suffered considerable
changes in the last decades. However, web applications sometimes are not able to achieve
the same performance as native applications or provide great offline functionalities. Al-
though these problems are reducing and Progressive Web Applications try to minimize
it [4]. We will now see some of the most popular development tools to develop these types
of applications.

2.3 Development Tools

A brief overview of some technologies that exist to develop web applications, native ap-
plications, and PWAs was introduced in 2016 [5]. However, it is already outdated. The
following sections will enumerate development tools capable of producing the different
types of applications for mobile devices.

12

Background and Related Work

2.3.1 Web development tools

Tools to produce Traditional Web Applications

Django is a development tool to produce Traditional Web Applications. It includes an
ORM for database transactions and was one of the most popular tools when Traditional
Web Applications used to dominate. However, it is currently losing market share since
Single Page Applications are replacing Traditional Web Applications. Ruby on Rails or
Laravel are other examples of popular tools to produce Traditional Web Applications.

Tools to produce Single Page Applications

Angular was one of the first frameworks that appeared to develop Single Page Applica-
tions [31]. It is slowly becoming outdated and companies are ditching it for React.js, Vue
or Svelte.

React.js is currently the most popular development tool to produce SPAs. Instead of
interacting with the Real DOM, React uses an abstraction called virtual DOM [32].

Vue.js author tried to grab the best parts from Angular and build a development tool
capable of producing fast applications without Angular overhead [33]. It also uses an
abstraction to interact with the DOM.

Svelte is another tool to build web applications. This tool interacts with the real DOM and
claims that abstractions like the ones used by React.js or Vue add overhead [17]. “Svelte
is a compiler that knows at build time how things could change in your app, rather than
waiting to do the work at run time” [34]. Since Svelte compiles everything at build time, it
does not need to bundle the whole library code to make computations at runtime as React
and many other development tools do. Svelte is starting to be adopted by the JavaScript
community, and it is already being used by big companies like Microsoft, Amazon, NY
Times.

Preact is a minimalistic version of React with only the needed features to produce fast
and simple web applications. It is starting to be used by huge companies to build small
applications. It is basically React.js with lower overhead [35].

Gatsby is a meta-framework, i.e., a framework built on top of other framework. It is built
on top of React and is usually used to build static websites by major companies. However,
it is currently losing market share to Next.js [36].

Next.js is another meta-framework. Claims to be a scalable, performant, and production-
ready library built on top of React [37]. It is used to build both static and dynamic web
applications. It is backed by a company called Vercel and is already being extensively used
by popular companies (e.g., Apple, Google), and expanding exponentially.

Blitz.js is a recent framework built on top of Next.js that aims to build full stack web
applications [38]. It is gaining the attention of the developers that were used to build
Traditional Web Applications since it is inspired by the same principles of Ruby on Rails
and Django (i.e., tools to build Traditional Web Applications). RedwoodJS is another
JavaScript library built on top of React.js that tries to achieve the same as Blitz.js [38].

13

Chapter 2

SvelteKit is a framework that tries to facilitate the creation of Svelte applications ready
for production [39]. SvelteKit is similar to Next.js, but for Svelte.

Nuxt.js is a framework to build Vue applications. Next.js was inspired in Nuxt.js [40].

In 28th June of this year, SolidJS officially launched their first stable version. It is another
development tool to build web applications. While it has a syntax similar to React.js, the
authors of this tool decided to interact with the Real DOM instead of abstracting it [41].
SolidJS follows a similar approach to svelte in that it also works as a compiler.

We are already observing the birth of different development tools that aim to be the
successor of Single Page Applications. An example of such is Marko.js. Marko.js tries to
reimagine web applications and instead of sending a huge bundle that the client needs to
parse, Marko streams the contents of the application based as soon as they are ready [42].
With this approach, the users do not need to wait until the browser parses the bundle and
can see content almost instantly. Astro is another library that follows a similar approach
and tries to serve the applications with as minimal JavaScript as possible [43].

As we can observe, the web is a constant fast-growing environment, with new development
tools launching and current ones releasing new versions every month. We will now switch
to the native environment, and we will see that although the pace is slightly slower, it is
still a considerable fast-changing environment.

2.3.2 Native development tools

Java (Android) used to be the main choice when developing fully native Android applic-
ations. It was vastly used because of its performance and being the official and primary
way of developing Android applications.

Kotlin is replacing the previous tool. Kotlin is currently used by 60% of professional
Android developers[44]. Can produce fast and efficient native applications. Pinterest,
Trello, or Evernote are examples of Android applications made with Kotlin.

Tools to produce Cross Platform Applications

Ionic is a development tool to produce hybrid cross-platform applications [45]. It uses
web view native containers to render web applications in multiple platforms using web
technologies (e.g., with React). Capacitor plugins can then be used to platform-specific
native APIs from the web view environment. It is extremely popular because it allows
building applications that run natively on several platforms using web technologies known
by lot of developers (e.g., React.js).

React Native is a cross-platform technology to build native applications for both iOS
and Android [30]. React Native has a syntax similar to React.js, which enables developers
with a web background to build native applications and is becoming the reference to build
cross-platform native applications. Examples of applications built with this technology are
Airbnb, Coinbase, and Twitter.

Expo is a framework built on top of React Native to build applications for several platforms

14

Background and Related Work

from the same codebase [46]. Expo introduces one more level of abstraction and with the
help of react-native-web 3 can produce output to the web in addition to iOS and Android
platforms.

Flutter is a popular development tool created by Google to produce native cross-platform
applications from the same codebase [47]. Uses its own components and render mechanism,
allowing for better performance than other cross-platform frameworks. It is already being
used by big companies such as Alibaba, Google, and Toyota.

Throughout the previous sections, we tried to sum up the most popular development tools
to build applications for mobile devices (i.e., web, hybrid and native applications). Of
course, we could not cover all the development tools that exist. This summary shows the
exponential grown of these environments and although it keeps pushing the technology
forward, engineers may have a hard time when choosing a tool one for their use cases.
Therefore, it is crucial to assess them and figure out which one is suitable for each use
case. Benchmarking is a possible solution to achieve this. The following section will go
through important concepts regarding benchmarking and why it can help to rank different
types of software according to certain properties.

2.4 Benchmarking Concepts

Benchmark can be defined as “standard tools that allow evaluating and comparing different
systems or components according to specific characteristics (performance, dependability,
security, etc)” [48, 49].

This allows customers and vendors or to assess and compare different products to ease the
process of selecting a product or to help to improve the products.

In order to make a fair and meaningful comparison, a benchmark must be highly rep-
resentative: i) the conditions and setup in which the benchmark is performed must be
representative of realistic scenarios, ii) the properties (e.g., performance, security) of the
product that are the target of the benchmark must be representative of the main functional
and non-functional requirements of the product, and finally iii) the metrics chosen for the
evaluation must be representative of the properties under assessment [50].

When conducting a benchmark, four main components are key:

• System Under Benchmark (or SUB): refers to the product that will be assessed
in the benchmark (e.g., in our experiment they are the selected development tools).

• Rules/procedure: specify what needs to be followed during the benchmark cam-
paign. The procedure must be easy to follow because the benchmark needs to be
easily re-executed.

• Workload: refers to applications input values, which determine the type of opera-
tions that should be executed during the benchmark. The main associated challenge
is workload representativeness.

3https://github.com/necolas/react-native-web

15

https://github.com/necolas/react-native-web

Chapter 2

• Measures (or metrics): refers to measurement tools to be used for evaluation of
the SUB’s characteristics (e.g., page load time). Measures determine what data and
how to be collected for calculating the value of the metrics.

A benchmark can target several properties. However, in our study, we are only concen-
trating on two primary ones:

• Performance: focus on a specific domain and compares different systems (e.g., data-
bases or operating systems). Commonly used by vendors to promote their products
(marketing). The problem with this type of benchmark is that during the tests it is
assumed that there are no errors and everything always works. In our experiment,
we focused on performance and measured several metrics such as CPU and RAM
usage, response times (see Section 4.1.3).

• Dependability: focus on whether a system reacts well in the presence of problems.
Dependability integrates the following attributes: Availability, Reliability, Safety,
Confidentiality, Integrity and Maintainability [51]. Includes performance benchmark-
ing and fills its problem. Faults are inserted to see how the system reacts. The faults
inserted do not take into account the malicious behaviors that result from the ex-
ploitation of some vulnerability in a system. This means that besides the workload
present on performance benchmarking we also have a fault load [51]. Although our
experiment did not include dependability, we believe it can easily be extended to
support so (see Chapter 3).

The results of the benchmark enable comparisons between the systems under benchmark
according to the properties that we target.

Chapter 4 explains the experiment we conducted and how we used these benchmarking
concepts to compare different development tools capable of producing web applications in
terms of performance.

2.5 Evaluation of Web and Native Applications

This section presents several studies that assessed web and or native applications for mobile
devices. Several works in the literature were found that focus on comparing different mobile
applications [3, 45] or different web applications [9, 52]. Some studies compare mobile and
web applications [53, 54]. However, a lack of representativeness was observed in the chosen
features of the applications under test (e.g., [54] only considers two features: geolocation
and camera). Also, sometimes, the metrics used were not sufficient to effectively and
precisely evaluate and compare different development tools against each other (e.g., the
same study [54] does not consider the application package size, battery consumption, or
other important metrics in mobile devices).

2.5.1 Benchmarking web applications

In 1998, a “self-configuring, scalable benchmark that generates a server benchmark load
based on actual server loads” was presented [55]. In other words, they performed bench-

16

Background and Related Work

marking tests (heavily based on server load, throughput and response time as opposed to
the existing benchmarks at the time that only focused on throughput and nonexistence of
faults) on traditional web servers. Despite the paper being from the last century, it con-
tains several phrases that could be applied to the current times, such as: “we need realistic
and meaningful ways of measuring their performance” or “Current server benchmarks do
not capture the wide variation”. They claim that benchmarks of the time did not take
into account that faults occur, and they are right: few current benchmarks do. This paper
makes a fundamental claim: “although people are impossible to model (the end-users of a
software), we cannot just stop benchmarking it”. This phrase means that even if engineers
cannot predict all user actions, it is still important to assess how different systems behave
after a subset of common user actions.

In 1999, a study was published comparing different schools’ and professional organizations’
websites [56]. They reveal interesting metrics for the time being, such as “how fast does the
main page of the website load” or “does the site provide text-based navigation for users who
may have a slow connection or poor graphics ability” (the latter also considering faults -
slow connection). This reveals that applications must not leave users apart who have
fewer conditions. At the time, websites were already “much more than simple graphically-
oriented hypertext” and were “becoming key entry points for customers and clients of an
organization”. Also, they provided an interesting explanation of why they performed this
benchmark: “discover the‘best practices” of organizations related to this study’s sponsor”
in order to improve their own website.

Around a decade later, in 2008, a benchmark of Web 2.0 was published [12]. With the
introduction of Web 2.0, new benchmarks were necessary. They presented a set of automa-
tion tools to generate load and measure the websites’ performance. They developed two
similar applications in both PHP and Ruby on Rails that provided the same functionalit-
ies. Among other works, we inspired ourselves in this approach to develop our assessment
framework. These applications could also be applied to the same workload and deployed
in different deployment environments. They discovered that the bottleneck in these ap-
plications is the persistence tier (i.e., accesses to the database or file system). This was
the first study that aimed to create a benchmark for the Web 2.0.

Similar to the previous work, in 2011, a study provided an architecture for benchmark-
ing frameworks to develop the Web 2.0 applications (e.g., Ruby on Rails or PHP) [57].
These frameworks emerged to simplify the web application development and, as said be-
fore, needed to be benchmarked. They claimed that traditional web benchmarks such as
RUBiS or TPC-W only took into account simple web applications that generated two to
six requests to fetch its whole page content. At that time, [Ebay.com](http://ebay.com/)
and [Amazon.com](http://amazon.com/) required 28 and 141 browser-interactions to fully
fetch the index page, which reveals the lack of representativeness of such benchmarks.
These new technologies brought an entire new level of complexity in terms of interactions
with the web-browser that needed to be assessed. Therefore, they proposed a modulated
architecture that can be used to benchmark the traditional way to develop applications
(i.e., Web 2.0).

The study [58] compares a Progressive Web Application (PWA) with a Regular Web Ap-
plication (RWA). They used the same template for both applications and implemented the
PWA features in one of them. This resulted in two identical applications: one that had

17

Chapter 2

PWA capabilities (e.g., work offline) and the other that had not. As expected, since con-
tent can be served from the cache, they observed that on repeated visits speed index the
PWA outperformed the RWA. They also made another claims that although interesting,
we have some thoughts about:

• “Https connection for PWA is slowing down all of the PWA’s performance metrics
on the first visit”: Of course, encryption introduce overhead and is always slower
than no encryption. However, using HTTPS is crucial, and it should be impossible
to produce web applications without it. This process should be applied to any web
application (regardless of whether it is RWA or PWA).

• “Memory consumption on PWA increased more than 2 times the size of RWA”: This
problem can happen due to poor caching policies (e.g., caching all the application
assets of course will increase memory consumption, but in most times it is not ne-
cessary).

• “Hence this paper will cover unique features of PWA that a general web programmer
might be unfamiliar with and compare the result with regular web site to see if it
worth it to build/rebuild your web site with PWA features and requirements”: It
is always important to consider converting a Regular Web Application into a Pro-
gressive Web Application to improve the user experience. As stated before, ideally,
a PWA is just a RWA with more performance, accessibility and security. Also, it is
not necessary to rebuild the entire application to convert it into a PWA, this can be
an ad-hoc process.

In 2017, the energy efficiency in Progressive Web Applications was studied [25]. As we saw
before, service workers are the brains behind these type of applications. They define service
worker as “a set of APIs that allows developers to programmatically cache and preload
assets and data, manage a JavaScript module running in its own thread and providing
generic entry points for event-driven background processing (e.g. reaction to the receiving
of a push notification)”. Because service workers run on the background, they have a
cost. In this study, the impact of service workers in an application in terms of energy
efficiency was assessed. They studied seven different real PWAs running “with and without
service workers, under different network conditions (2G and WiFi), and on different mobile
devices (i.e., low-end and high-end)”. They concluded that although in most situations the
service workers have not a big impact in the energy, developers must be careful on how to
implement them.

TechEmpower benchmark [9] is a project currently maintained (at the time of writing).
It measures the performance of multiple operations (e.g., JSON serialization, database
queries, the return of those queries to the HTML response that is sent to the client, etc.)
between multiple traditional web applications (web 2.0). This benchmark is considered a
standard, but it only focuses on the traditional web applications and does not take into
account the modern web: Single Page Applications.

Web frameworks [59] is a benchmark that aims to test also Traditional Web Applications
as TechEmpower benchmark [9] but more limited. It is also currently maintained (at the
time of writing) and only focus on three HTTP calls in different frameworks. There are
no database calls or any kind of computation, and everything always goes well in the tests

18

Background and Related Work

(there are no faults inserted). Therefore, the workload is not representative. As the first
one, it only focuses on traditional web applications.

JS-Repaint-Perfs [60] is a benchmark from 2016, and it is not currently maintained. It tries
to measure the repaint rates of JavaScript libraries to create Single Page Applications. This
benchmark uses random computations (using the Math module) to simulate queries that
are far from representative, but since the purpose is only to simulate the repaint-rates of
each library it could be enough. Also, the tests have no faults (i.e., everything always
behaves as expected).

js-framework-benchmark [52] is another web application benchmark. It is currently main-
tained (at the time of writing) and consists of multiple operations around an HTML table.
This HTML table are presented in applications developed using different SPA Frameworks.
This was the first benchmark we found that aims to assess different Single Page Applica-
tions. However, the features in the application tested are not representative of what a SPA
is capable of (i.e., CRUD - create, read, update and delete - operations around a table may
be one use case of an SPA, but it is not the only one).

Realworld [61] defines a Reference Application Specification which is a clone of Medium, a
blog application, and implements it with different development tools. It is a really popular
tool and counts with contributions from more than 50 developers. This project covers a
lot of tools and contains some performance comparisons between the development tools.
However, it restricts the focus to only a simple blog application which we believe it is not a
representative application that explores the functionalities of mobile devices (e.g., camera,
geolocation).

2.5.2 Benchmarking native applications

Alongside the web, there are a lot of work in the mobile environment and its comparison to
the web - primarily against PWAs. In general, all studies provide great theory explanations
of the frameworks under study but lack when it comes to benchmark them. The studies
that we found that perform some kind of benchmarking end up lacking on representat-
iveness (the same problem in Web frameworks [59] and in js-framework-benchmark [52]
benchmarks presented before) resulting in simple applications that cover few use cases.

In 2019, a study that focused on Flutter, a framework to develop multiple applications
from the same codebase, and compares it to Apache Cordova (nowadays called Ionic) and
Native (e.g., iOS with Swift and Android with Java) was published [45]. They developed
the applications in those languages. These applications features were: create and edit tasks.
Metrics such as source code lines; number of files; dependencies; application package size
and installed size; RAM usage, startup and view transition timed. Tokei to perform a
static analysis between the applications. They concluded that both native applications
(i.e., Android and iOS) resulted in three times the lines of code of both flutter and ionic;
in terms of files: native combined had 36, flutter 16 and ionic 27; regarding dependencies
native combined had 10, flutter 7 and ionic 36. Regarding performance profiling and
application characteristics, they concluded that:

• “Flutter versions were the fastest and most responsive versions while the Cordova/Ionic

19

Chapter 2

versions were slow to start”

• “the overhead of the cross-platform frameworks has a noticeable impact on memory
requirements”

• “flutter had the highest values (installation size of 41.29 MB on Android and 74.00
MB on iOS) and ionic the lowest (with 2.69 MB on Android and 7.90 on iOS)”

A performance analysis of a fully functional mobile application implemented with platform
ten cross-platform tools (or CPT, term that we use several times in our work described in
the beginning of this chapter) and native for Android, iOS and Windows Phone operating
systems was published in 2016 [3]. As we talked before, maintenance is a big problem in
native development, which lead to the appearance of cross-platform tools. The latter use
web containers (i.e., web views) which makes it easier for people with web background but
many times at cost of performance. They felt that this assessment was needed because
there are many cross-platform tools. The application was developed by experts from each
tool but since it is from 2016 some technologies used are already outdated and followed
the PropertyCross specification [62]. However, the technologies chosen were justified and
representative (i.e., they chose technologies that used different programming languages,
which can be a key factor for a company). The application was tested in both high-end
and low-end iOS and Android devices, and they are factory reset and updated to the
most recent operating systems available at the time. The metrics collected (and tools to
collected) were the following:

• Response Time: launch time of application (from tapping the app icon to display
the main screen); time to load new page (favorite page used because it was the
only one that did not require internet access); time to return to the previous page.
Measuring tool was DDMS in Android (using difference between the timestamps)
and instruments tool in iOS.

• CPU Usage: overall CPU usage of application and in two specific actions. Measuring
tool was ADB in Android and Instruments tool in iOS.

• Memory Usage: Memory allocated when: the application fully launches; after visiting
each page in a specific order; after each page is visited. These values were calculated
while navigating through the app in a specified order. Measuring tool was ADB in
Android and instruments tool in iOS.

• Disk Usage: space taken by the installed app; size of the APK for Android and IPA
for iOS. No measuring tool was needed because such values are available without
any.

Battery usage was not considered, and they claimed that “impact caused by overhead of
CPT is minimal”.

They concluded that the disk space used were less in native technologies than in CPT
because they do not need web view and runtime packed in the application size. They also
concluded that the frameworks that depended on JavaScript were the most CPU intensive
and with the slowest launch times, but achieved similar navigating response times to native.

20

Background and Related Work

2.5.3 Benchmarking web and native applications

A comparison between a Native Android Application (NAA) and a Progressive Web Ap-
plication (PWA) was published in 2017 [54]. They developed the same app in both native
Android with Java and PWA with React.js. They only focused on two features: geoloca-
tion and camera, and metrics collected were its response times. They recognized that they
tested few features and more APIs must be assessed (e.g., push notifications, startup time
of applications, file access, etc.). Their results revealed that geolocation in PWA was sig-
nificantly faster - “This result shows that applications that relies heavily on maps could be
developed as a PWA instead of a NAA, making the development process faster since two
platforms can use the exactly same code”.

Another comparison between applications developed using different frameworks was pub-
lished in 2017 [53]. They developed the same application using both ionic, react-native,
and React.js (for the PWA). However, both the metrics and the features of the application
were not representative. The metrics used were:

• Size of installation

• Launch time

• Time from app-icon tap to toolbar render

According to their results, the progressive web application only lost to the other two in
the third metric, winning the other by far. They also claimed that: “Progressive web apps
enable the best of both approaches, where end-users can easily experience an application
through their web browser, then choose to install it via an “Add to Home screen” banner
prompted”.

Another study dived into Flutter [47]. Provides an explanation about the differences
between Native development and two hybrid technologies - React Native and Flutter. They
claimed that for native applications “platforms expose exclusive high-level APIs (Applica-
tion Program Interface) that are used to implement the user interface, I/O (Input-Output)
operations, and other features” resulting in “a tailored look and feel of applications on each
platform that most users have become accustomed to”. This is completely true, however,
since with React Native, we can use the native widgets, and Flutter provides the material
widgets, we can also develop applications that users are accustomed to with those two
other frameworks.

An article that explains the different caching strategies work and how PWA provides offline
capabilities was published [63]. It contains tests related to the cache. Using blazemeter
to test the same application made as an Android app and PWA, they discovered that
the PWA’s average response was three times faster. After analyzing their tests, in the
discussion, they reveal that the PWA performance of the same app is better than its
Android version. Also, as expected, they reveal that the caching process increases the
performance of a PWA.

The study containing a brief comparison between React Native, native applications, and
PWAs was published in 2018 [64]. They made inquiries about user experience regard-

21

Chapter 2

ing each application and its features. It contains a table containing several features and
whether a tool supports them or not.

2.5.4 Summary

The Table 2.1 contains a brief summary of all related work dicussed in the previous sections.

Table 2.1: Related work summary

ID Study Type Description Contributions Limitations

BW1 [55] Benchmarking
Web

Benchmark traditional servers “although people are impossible to model,
we cannot stop benchmarking”

Outdated

BW2 [56] Benchmarking
Web

Performance of different web-
sites

“discover the best practices” to improve
their website

Outdated

BW3 [12] Benchmarking
Web

Benchmarking traditional web
applications

multiple applications developed with web
frameworks (assess apps to assess the
frameworks)

Outdated

BW4 [57] Benchmarking
Web

Benchmark traditional web traditional web benchmarks simple web
applications

Outdated

BW5 [58] Benchmarking
Web

Web Application vs PWA repeated visits speed index the PWA out-
performed the RWA

wrong practices when develop-
ing apps

BW6 [25] Benchmarking
Web

Assess Energy Efficiency of
Service Workers

Service workers have not a big impact in
the energy

-

BW7 [9] Benchmarking
Web

Benchmark traditional web
frameworks

Well-structured, maintained do not consider SPA

BW8 [59] Benchmarking
Web

Benchmark traditional web
frameworks

Maintained Workload not representative;
do not consider SPA

BW9 [60] Benchmarking
Web

Repaint rates of SPAs Focus on SPAs Outdated and not maintained

BW10 [52] Benchmarking
Web

Benchmark of different SPAs
frameworks

Focus on SPAs; well structured Workload not representative;
Faultload not included

BW11 [61] Benchmarking
Web

Benchmark of different SPAs
and Traditional web frame-
works

Focus both on SPAs and TWAs; Well-
structured; Specification well defined

Features presented in applic-
ation are not representative
in mobile devices (simple blog
app)

BN1 [45] Benchmarking
Native

Flutter vs Ionic vs Native Good metrics;Flutter the fastest;Ionic the
slowest to start;Frameworks impact on
memory and size

Workload not representative

BN2 [3] Benchmarking
Native

Performance analysis of sev-
eral CPT

Representative metrics. JS Frameworks
are CPU intensive

Battery usage not considered;
no faultload

BN3 [47] Benchmarking
Native

Flutter vs RN - -

BNW1 [53] Benchmarking
Native and Web

PWA vs Native App PWA smaller and with faster launch
times;Lost in navigation time

Workload and metrics not rep-
resentative

BNW2 [54] Benchmarking
Native and Web

PWA vs Native Geolocation+Camera faster in PWA Workload not representative

BNW3 [63] Benchmarking
Native and Web

PWA vs Native Caching increases the performance of a
PWA (three times faster)

-

NW1 [64] Native and Web Inquiries about PWA vs React
Native vs Native

- -

NW2 [65] Native and Web UX comparison between Nat-
ive vs PWA

- -

NW3 [5] Native and Web Technologies to develop differ-
ent apps

- -

NW4 [66] Mobile and Web PWA explanation - -
NW5 [27] PWA Stats Native and Web Website with PWA statistics -

As observed throughout this section, the related studies lacked when selecting the features
to implement the applications under assessment or which measures to gather when the
applications were being assessed. Also, there is a lack of studies that compared applications
from different environments (e.g., hybrid, native, and web). This is crucial because the
differences between these different types of applications are narrowing, and there is a vast
offer of development tools to develop them. In the following chapter, we will explain how
Savery addresses these problems.

22

Chapter 3

Savery Framework

Developers have, nowadays, countless solutions to support them in developing mobile ap-
plications. However, they lack ways that allow them to select which are the best develop-
ment tools for their specific case study. Existing studies comparing different applications
for mobile devices lack in choosing suitable features or metrics.

In this chapter, we present Savery, a framework for the assessment and compar-
ison development tools capable of producing applications for mobile devices.
Comparing development tools is a challenging proposition, as it is not feasible to effect-
ively compare them directly. Instead, the usefulness of comparing them is to learn which
one helps to create better (e.g., faster, lighter, with less overhead) applications or helps
to create applications with less effort or knowledge from the developers. We argue that it
is possible to make this comparison through the output of these tools, i.e., the developed
applications. With this approach, one can evaluate and compare several properties such
as performance and dependability (or even security) of the resulting applications.

As recommended in the best benchmarking practices, the assessment and comparison of
different solutions must be performed in a fair and useful way [48]. Thus, this framework
carefully lays out the relevant components and procedures to develop benchmarks that can
support this type of evaluation in a fair, effective, and representative way.

The framework was designed considering several quality attributes in mind, such as per-
formance, reliability, dependability. It was also designed to be extensible, so that in the
future it can support the assessment of security of the developed apps and even other
properties that are very relevant for development tools: the learning curve and the speed
or ease of development. The framework is prepared to be open source and to receive the
contributions of the community, both in extending it and providing new implementations
of the applications.

Fig. 3.1 depicts the principal components and the procedure to be followed to build such
framework. It details the required steps to be taken for the definition of the benchmarks
that have specific targets in terms of applications and quality attributes. As we can see,
there are four key phases, which are discussed in the following sections.

23

Chapter 3

(1.e) Select
Representative

Features

(1.f) Select
Development

tools

1. PRELIMINARY
ANALYSIS

(1.d)
Development

Tools, Features,
Metrics

(1.a)
 Feature
Selection
Criteria

(1.b)
Development
Tool Selection

Criteria

(1.c)
 Metric

Selection
Criteria

(2.b)
Functional
Test cases

(2.a) Implement Apps
with Development

Tools

(2.c)
Applications

Functional Validation

2. DEVELOPMENT OF
APPLICATIONS

(3.a)
Configurations

3. BENCHMARK CAMPAIGN

(3.b)
Workload

(3.c)
Faultload

(3.e)
Execution of
Applications

(3.f)
Collect Runtime

Metrics

(3.g)
Collect Static

Metrics

4. RESULTS ANALYSIS

(4.b)
Development Tool
Individual Analysis

(4.c)
Comparison
Between the

Development Tools

Validated Applications

Reference App
Specification

Selected
Development
Tools

Selected
Metrics

Static Metrics DataRuntime Metrics Data

Invalid Applications

Approach:
● architecture that can

be used to rank
certain software
according to certain
properties

(3.d)
Attackload

(4.a)
Comparison

between
Applications

 (1.g) Select
Metrics

Target

Figure 3.1: Overview of the components and steps defined in the Savery Framework.

24

Savery Framework

3.1 Preliminary Analysis

This phase defines the target of the benchmark in terms of the application domain
of interest, types of development tools to be adopted and quality attributes of interest.
This target is decisive for specify the feature selection criteria, the development tool
selection criteria and the metric selection criteria.

Based on this criteria, we need to analyze and select a representative list of features of
mobile applications. This represents the set of features that the applications under test
should support and should correspond to classes of applications that might be of interest
of groups of developers. For this, it is necessary to study the most common features in
the mobile applications for the domain of interest defined as target for the evaluation to
be conducted. The result is a reference app specification, which is a specification that
details which functionalities should be implemented in each application and the respective
interactions, and a set of functional tests to those functionalities.

3.1.1 Reference App Specification

Based on these criteria, we need to analyze and select a representative list of features of
mobile applications. This represents the set of features that the applications under test
should support, and should correspond to classes of applications that might be of interest
to groups of developers. For this, it is necessary to study the most common features in
mobile applications for the domain of interest defined as the target for the evaluation to
be conducted. The result is a reference app specification, which is a specification that
details which functionalities should be implemented in each application and the respective
interactions, and a set of functional tests to those functionalities.

3.1.2 Development Tools

Next, we need to analyze the existing development tools for mobile applications to select
a representative list of them (i.e., commonly used and recommended by the community).
There are only two requirements that restrict the available development tools:

1. They must be able to output applications for mobile devices, which can either be
native, web, or hybrid;

2. They need to provide the ability to identify each element of the application with a
unique ID.

This is crucial because we propose that the applications are treated as black boxes
with the help of the functional testing (more details in Section 3.2.3). Therefore,
assigning unique identifiers to each application element is the only way to identify,
and perform successful operations with them (e.g., grab an input field and click them
or verify if an image is presented on the screen). For example, several automation
libraries can identify elements in web applications if they have an unique ID assigned
to them:

25

Chapter 3

<button

id="UNIQUEBUTTON"

>
Automation library should be able to click me!

</button>

Although our framework defines few requirements for this, it will also depend on the library
used to perform the functional tests. In the experiment conducted, an extensive analysis,
we found that Appium and WebdriverIO can be great matches for this framework (more
details in Section 4.2.3).

3.1.3 Metrics

Finally, we need to select adequate metrics to collect. These metrics depend on the quality
attributes that we are interested, and will help to provide insightful comparisons between
each development tool.

They will be collected during the third phase when executing the benchmarking campaign.

For this, we propose two main types of metrics:

• Static metrics: metrics that are collected before running the campaign tests. Includes,
for example, application size, line of codes, dependencies number (and dependencies
number only for development), and build times. This type is more focused on providing
insights regarding the developer experience rather than the user experience.

• Runtime metrics: metrics that are collected during the execution of the applications (i.e.,
during the execution of benchmark campaign test cases). Depending on the benchmark
focus, it may include, for example, response times, CPU usage, and RAM consumption.

The outputs of this phase (i.e., selected tools, reference app specification, and selected
metrics) are used in the following phases.

3.2 Development of Applications

In the second phase, Development of Applications, we prepare the applications for the
benchmarking campaign (i.e., third phase). This phase is responsible for developing the
applications following the reference app specification and using the selected development
tools; both defined in the previous phase. After implementing the applications, they need
to pass through a validation phase with the help of functional testing. This process aims
to verify if the applications are correctly implemented or not. It is also in this phase that
auxiliary tools (e.g., to help the benchmark execution, to analyze the results) should be
developed.

This phase outputs the validated applications prepared to be assessed in the third phase
and possible auxiliary tools to be used in the following phases.

26

Savery Framework

3.2.1 Auxiliary Tools

During the preparation phase, all the auxiliary tools to aid the main processes of the
framework (e.g., functional validation, execution of the applications, analysis of the results)
must be built. The auxiliary tools can be multiple:

• A tool to send the functional tests to each application during the validation process
and report which parts of the application are incorrectly implemented.

• A tool to send the workload during the benchmark campaign while gathering meas-
urements.

• A tool to analyze the results (i.e., the measurements gathered) from the benchmark
campaign and generate different tables and charts for analysis.

3.2.2 Application Development

Ideally, applications should be developed by engineers that are fluent in each specific de-
velopment tool to make sure that the implemented application adopts the corresponding
best practices. When this is not possible, bias problems should be mitigated by reviewing
and improving the implementations or having multiple versions for the same application.
In the cases that the benchmark is of interest to a broad community, it is recommended
to be open to their respective contributions. For example, in our experiment, we run into
a bug in one of the implementations that could be easily avoided if the applications were
peer-reviewed before moving to the validation process. Instead, we only detected the error
in the validation phase delaying the validation of the applications (for more info, check
Section 4.2.2).

This process represented in Fig. 3.2) receives the Reference Application Specification and
the set of development tools selected from the previous phase, and outputs the applications
implemented.

(2.a)
Applications

Development using the
Chosen Development

Tools

n Chosen
Development Tools

Reference App
Specification

n different Applications
waiting to be validated

Figure 3.2: Steps for the development of the applications.

During the process, the applications will be implemented following the reference app spe-
cification and using the development tools selected. It is important to note that the
application elements must have unique identifiers (these identifiers are defined in the Ref-
erence App Specification) to allow the functional tests to perform operations around the
application elements.

The output of this process will be the different applications implemented but yet to be
validated. They may return to this process again if they fail to pass the validation phase.

27

Chapter 3

3.2.3 Functional Validation

After all the applications are implemented, we need to confirm that they have no issues
before proceeding to the benchmarking campaign. Therefore, all the applications will go
through a validation phase. This process is presented in Fig. 3.3. It receives the different
applications implemented from the previous process and set of functional tests. If there
are no issues with the implementations, they are free to proceed to the campaign phase.
Otherwise, they will return to the Application Development process (Sec. 3.2.2) to fix the
existing issues.

Invalid Applications

Valid Applications

Figure 3.3: Steps for the development of the applications.

We propose that the implementations are validated with functional testing without insert-
ing any custom code as some testing libraries do (see more in Sec. 4.2.3). This is done
because of the following main reasons:

• To keep the tests as non-intrusive as possible.

• Since this framework targets development tools that output applications for different
environments (e.g., web, native, or hybrid), we want to develop tests that can be
reused across the different implementations and in different phases (e.g., preparation
and campaign).

So, given that the applications can be either native, hybrid, or web, we propose that the
functional tests are implemented using a technology compatible with all these environments
(more on how we choose the technology for our benchmark in Sec. 4.1.2). Otherwise, we
would need to use a different technology for each environment, which would result in
redundant tests with the possibility of introducing more bugs unnecessarily.

By treating the applications as black boxes, the functional tests will be non-intrusive, and
we bring the applications under test closer to what happens with real-world applications
without adding any custom code to each implementation to perform the tests.

One validated application means that it is correctly implemented and follows the Reference
App Specification defined in the first phase. If this happens, all the components in the
application under validation are presented, and each component presents its functionalities
working (e.g., Camera component is presented application and renders a camera feed and
button to capture images from the camera feed). If an implementation presents issues, it
will need to return to the development process to fix the issues before returning to the
validation process.

28

Savery Framework

When all the implementations are successfully validated, they can proceed to the campaign
phase and are ready to start the benchmark.

3.3 Benchmark Campaign

The benchmarking campaign phase is responsible for executing the benchmark and gath-
ering the measurements. As inputs, it receives the validated applications from the second
phase and the selected metrics from the first phase.

After respecting certain configurations, a workload will be submitted to the validated ap-
plications. At the same, the defined measurements are gathered according to the previously
defined runtime metrics. It is also in this phase that the applications are analyzed in order
to collect the static metrics.

Attackload and Faultload in Fig. 3.1 and in Fig. 3.4 are grey-shaded because we did not
include them in the experiment we conducted. However, future benchmarks may include
them since our framework can be extended to support these two types of loads.

Validated Applications

Figure 3.4: Steps for the execution of the applications implementing the reference specific-
ation.

3.3.1 Configurations

The configurations are the set of rules that we must respect before starting each execution.
The following list enumerates examples of such configurations:

• If the applications under test are web-based, they must always be served under an
encrypted connection using HTTPS.

• The remote server that serves the web applications must isolate them from each other
to have fair comparisons.

• Permissions are not granted to any application. This is done to emulate what happens
in real-world scenarios. The workload must include a warm-up period to perform this
type of operation (e.g., accept the required permissions before the main tests start).

29

Chapter 3

• The target device (e.g., iOS or Android device) that is running the application cannot
have background processes running. Before starting each campaign, the device must
also be restarted to assure that all the processes are cleaned and the previous tests
have no impact on the subsequent ones.

When the framework is instantiated, rules can be added or removed depending on the
systems that are being assessed.

3.3.2 Workload

A benchmark workload refers to the applications’ input values, which determine the
type of operations that should be executed during the benchmark. The main associated
challenge is workload representativeness. The workload should emulate what an end-user of
the application would do and comprise a set of functional tests that cover all the application
functionalities in one or more sequences.

The process of sending the workload to the applications under test should be automated to
ease the reproducibility of the benchmark, i.e., to facilitate the execution of the campaign
several times. We recommend that each application is tested 30 times.

3.3.3 Measurements Gathering

The process of gathering measurements has some requirements:

• Must be reproducible, i.e., easy to execute since the campaign must be executed
several times.

• Must be non-intrusive: the goal is to minimize the impact of this process on the
applications to have transparent results.

• Must be fair to all types of applications under test, i.e., can not be more expensive
to collect metrics in Web applications than in Native ones (e.g., gathering the CPU
usage cannot be more expensive when assessing web applications than native ones).

When in need of an external library to count, for example, the lines of code of the applic-
ations, one should seek, when possible, libraries that support all the applications under
test, i.e., avoid using different libraries to collect the same metric.

Also, this process should be as simple and naive as possible to keep the campaign complex-
ity low. For example, if all the applications are JavaScript-based, to collect the depend-
encies number, this process can be as simple as analyzing the package.json file. When
possible, tools that are already available should be used to the detriment of adding new
libraries (thus, increasing the campaign complexity). For example, if the target device is an
Android one, ADB commands can be used to query important metrics such as CPU usage,
RAM consumption, battery levels, among others (identical situation when the target is an
iOS device).

30

Savery Framework

3.4 Result Analysis

Finally, the fourth phase, Result analysis concludes our framework. In this last phase,
all the measurements are received from the previous phase.These measurements will allow
the evaluation of each application. Consequently, this analysis will provide comparisons
between the different development tools that produced the applications. Fig. 3.5 presents
the proposed folder structure to save the results in a well-organized manner.

savery
outputs

<app_name>
<campaign_date>

config
measures
results
tests

...
...

...

Figure 3.5: Proposed folder structure to save Campaign results

Each campaign execution should output the following data:

• config: configuration used for the current campaign;

• measures: list of measurements gathered during the campaign execution (e.g., CPU
usages, RAM consumption);

• results: additional information about the campaign (e.g., start-up duration);

• tests: tests information (e.g., outcome, duration, timestamps);

This section concludes the presentation of our framework. As we saw, with four equally
important phases, Savery tries to fill the gap that currently exists when assessing different
tools that exist to produce applications for mobile devices. In the following chapter, we
described the benchmark that instantiated to demonstrate the applicability of the proposed
framework.

31

This page is intentionally left blank.

Chapter 4

Performance Benchmark of Mobile
Development Tools

The framework presented in the previous chapter guides the definition of concrete bench-
marks for a target that consists of application domain of interest, types of development
tools being considered and quality attributes of interest. It leaves to the user the freedom
to define the benchmarks according to their interests, and therefore, more useful. However,
as many users have similar interests, a way to increase the adoption of the framework is
to accompany it with concrete benchmarks for targets that are of general interest.

In this chapter we present an instantiation of the Savery framework in a concrete bench-
mark for a target of entertainment and utility applications, development tools
that are popular in the JavaScript community, and with a focus on perform-
ance attributes. For this, it was necessary to study the popular entertainment and utility
applications to learn what are the most common and representative features to be con-
sidered. To be evaluated, we selected 9 widely used mobile application development tools
and considered metrics of response time and resource consumption.

We developed 9 mobile applications with the defined set of features, each one implemented
by one of the selected development tool. These applications were validated according to
the set of functional tests defined for the specified functionalities, and then were subject
to the benchmarking campaign while measurements were gathered for posterior analysis.
The in-house development of all applications may introduce a bias related to our specific
programming abilities, but this affects similarly all the alternatives, and that was mitigated
by following a reduced yet solid set of the best development practices. This problem will
be further mitigated due to the open nature of the benchmark, with the support of the
community that will suggest changes or propose new implementations.

The benchmark and the related materials, including documentation, sources of the applic-
ations developed for the experiments, and the results of the experiments are available at:

• https://savery.dei.uc.pt

The benchmark instantiates the components and the four main phases of the Savery
framework presented in Chapter 3. The ensuing sections present in detail the three first
phases, while the phase of Result Analysis, will be presented and discussed in Chapter 5.

33

https://savery.dei.uc.pt

Chapter 4

4.1 Preliminary Analysis

4.1.1 Reference Application Specification

Considering entertainment and utility applications, we leave out of the scope of our study
other types of applications such as games, payment, and chat. In order to understand
which features the reference application specification should support, we analyzed the
most popular applications and their primary features. Table 4.1 provides the overview
of our analysis of several sources, including [67, 68, 69, 70]. As we can observe, that all
the applications rely somehow on native features such as camera access, geolocation, and
notifications.

Table 4.1: Popular applications, download count (in Google Play Store) and their features

App Name Download
Count

Features

WhatsApp 1-5 billion audio call, camera, carousel, chat, login, notifications, video call
Facebook 1-5 billion camera, carousel, chat, content from external database, live feed, login,

notifications, reviews/comments
Facebook
Messenger

1-5 billion audio call, camera, carousel, chat, login, notifications, video call

Instagram 1-5 billion camera, carousel, display images/videos from web/cache, display posts
from database, live videos, login, notifications, reviews/comments

Snapchat 500m - 1 billion,camera, chat, login, notifications, short videos
UC Browser 500m - 1 billion,browser
Uber 100-500 m geolocation, login, maps, notifications
Youtube 1-5 billion display images/videos from web/cache, notifications, video player
Netflix 100-500 m display images/videos from web/cache, login, payments, notifications,

video player
SHAREit 500m - 1 billion,file access, share files over the web
Bitmoji 100-500 m camera, file access
Google
Search

1-5 billion content from external database

Google Maps 1-5 billion audio player, geolocation, maps
Amazon 100-500 m content from external database, deliveries, payments, reviews/comments
Twitter 0.5-1billion camera, carousel, content from external database, notifications, re-

views/comments
Pinterest 0.5-1 billion camera, carousel, content from external database, notifications, re-

views/comments
Google Pay 1-5 billion payments
Shazam 0.5+ billion content from external database, display images/videos from web/cache,

microphone
Spotify 1+ billion audio player, content from external database, login
ZOOM 0.5+ billion audio call, camera, chat, video call, screen sharing
Cash App login, payments
Google Meet 0.1+ billion audio call, camera, chat, video call, screen sharing
Microsoft
Teams

0.1+ billion audio call, camera, chat, video call, screen sharing

TikTok 1+ billion camera, carousel, display images/videos from web/cache, display posts
from database, live videos, login, notifications, reviews/comments

Telegram 0.5+ billion audio call, camera, carousel, chat, login, notifications, video call

34

Performance Benchmark of Mobile Development Tools

A large part of these apps require login to access the main features of the application. Also,
most of the applications rely on fetching content (e.g., images or videos) from an external
source. Given these observations, we designed the structure presented in Fig. 4.1.

Component 1 Component 2 Component N

Request Data

Database

Landing Login

Home
page

<U
ser is logged in>

<User is not logged in> Credentials

JSON web token

HTTP Requests

Navigation Flow

APPLICATION ARCHITECTURE

<login is succeed>

Backend
Server

Data

Authenticated Components

...

1.

2.

Figure 4.1: Overview of the main functionalities and navigation of the application.

According to this architecture, there are two main components, described below:

1. Mobile Application: application that will be developed in the Preparation Phase.
According to our analysis, the application flow presented is visible in the majority of
the most popular applications in the Android Store. It divides the application in two
parts: the authenticated and not authenticated. The authenticated parts are only
accessible after the user successfully logs in, while the other pages are accessible if
the user is not authenticated.

2. Backend Server: appears to support the mobile application because some applica-
tion components may require extra functionalities that cannot be done in client-side
(i.e., in the mobile application itself). For example, the authentication process (i.e.,
verifying if the user credentials are correct).

Mobile Application

When first visiting the application, the user is presented with a landing page. In this
page, there is a button to request the required permissions that may be necessary inside
the application. There is also another button to navigate to the Login page. Once the
user navigates to the login, is presented with a form where he can insert his credentials
(i.e., a username and a password). After submitting the credentials, an HTTP request is
sent to the backend server that will then return a unique token in case the credentials are
correct, and the user will be redirected to the homepage. This authentication process is
visible in almost any popular mobile application nowadays. Once the user is authenticated,
a Homepage is presented, and now, the user can access other eight carefully thought
components that aim to cover the majority of the features presented in the Table 4.1.

35

Chapter 4

These components may also require interaction with the backend server, which is done
via HTTP requests. The list of authenticated components, i.e., components that are only
presented once the user is logged in, is presented below:

• Homepage: renders a paragraph that tracks whether the user has given the permissions
or not and a table with the components that the user can access. These components
should be the remaining items of this list.

• Camera: renders the live camera feed. There is also the possibility to capture an image
by clicking a button which will be rendered below. This is a native feature seen in almost
all applications.

• Geolocation: renders user geolocation. This is also a native feature that is becoming
very used in popular applications. According to [71], 30% of study respondents think
that localized information and position-based information are crucial features.

• File Access: when a button is clicked, a file picker is displayed to select an image
from the file system. The image will be later rendered below. This aims to cover the
applications that render images after being uploaded.

• Notifications: after clicking a button, a local native notification is sent to the device.
Notifications are crucial to all applications to engage their users.

• Feed: when the page mounts, several random posts are requested to our backend server,
which contains a database with multiple posts. When the posts are received, they
are displayed below, each containing text and an image. This page also has an input
field to request more posts. When the submit button is pressed, the number of posts
will be requested to our backend server and displayed below. It aims to emulate the
fetching from external sources seen in popular applications, used in Techempower [9]
and considered a key in surveys [71]. In a survey, 60% of the respondents consider that
mobile apps that communicate with backend information are key [71].

• Carousel: when the page mounts, random images are requested and rendered to the
screen, and as the user scrolls through the page, more images are requested and rendered
simulating an infinite scroll.

• Background Sync: this component tracks the user connection and fetches content from
cache. It also contains two buttons: i) one to fetch an image from the cache; ii) another
to fetch a random image from the web. After the buttons are pressed, the images are
present below to test the app’s offline capabilities.

• Expensive Operation: contains several buttons to perform expensive operations in
a table, such as creating 100 and 1000 rows, swapping or deleting rows. Inspired in
another popular benchmark, it aims to test how the application reacts when submitted
to expensive operations [52].

Besides the authenticated components presented above, the application also has two un-
authenticated components:

36

Performance Benchmark of Mobile Development Tools

10:47

Logo

Components'
Content

Navbar

(a) Application Skeleton

10:47

Logo

Savery-React.js

This application was built with
React.js and it is part of the

savery benchmark.
Check more about the project in:

https://savery.dei.uc.pt

Go to Login

Ask Permissions

(b) Landing page component

Figure 4.2: Example of application layout

10:47

Logo

Login

Figure 4.3: Authenticated Navigation Bar

10:47

Logo

Homepage
Camera

Geolocation
File Access

Notifications
Feed

Carousel
Background Sync

Operation
Logout

Figure 4.4: Unauthenticated Navigation Bar

• Landing: when the application opens, a Landing page is presented. It contains a
small description about the technology used to build the application, a button to ask
the required permissions, and a link to navigate to the login page.

• Login: renders a form that contains two text input fields and a button. The input
fields are for the username and password, and the button to make a request to the
backend server with those credentials.

Fig. 4.2 presents the layout that each implementation should follow. Fig. 4.2a the ap-
plication skeleton. Each application page must always have a navigation bar with the
application logo (to identify and distinguish each implementation, we used the logo of each
development tool), and a button to open a bar that contains links to all the application
components. The navigation bar should display different navigation links depending on
whether the user is authenticated or not. The authenticated navigation bar is presented
in Fig. 4.3 and the unauthenticated in Fig. 4.4.

Each application element must have unique identifiers to facilitate the process of functional
testing. These unique IDs are listed in the Appendix A.

Table 4.7 presents the functional tests associated with each application component. Ap-
pendix B lists the screenshots of each application component of one of the implementations.

Finally, Table 4.2 presents a brief summary of the components previously-defined.

37

Chapter 4

Table 4.2: Summary of components defined in the Reference App Specification

Component Requires
Auth

Description

Landing No First page of the application
Login No Page where user can authenticate
Homepage Yes Display the components available
Camera Yes Render live feed, capture photo and

display it
Geolocation Yes Display user location
File Access Yes Upload image from file system and

display it
Notifications Yes Send native notifications
Feed Yes Fetch posts from external sources

and display them
Carousel Yes Load images infinitely as user scrolls
Background
Sync

Yes Track user connection and render
images from cache and web

Operation Yes Perform expensive operations

We could have bootstrapped the Reference App Specification from an outside project like
Realworld [61] or PropertyCross [62]. Although this projects were inspirations for our
study, we did used them for our Reference App Specification because at least one of the
following reasons: i) the primary focus of specification was not concerned on mobile devices;
ii) if we opted to the applications from these specifications, less customization was possible;
iii) when we found out about Realworld, we were already midway through our study, and
already have defined the Reference App Specification was presented. These problems could
be surpassed if we restricted the benchmark to only target blog applications. However, we
wanted to target more application types for mobile devices. Hence, we opt to define our
own Reference Application Specification from the scratch.

Backend Server

Some features in the Feed or Login components require a backend server. Hence, the
Reference App Specification also requires that a backend that all the implementations can
make requests to. It must serve two endpoints:

• /api/login: listens for POST requests that contain a JSON object in the body. The
object must have a username and a password. This endpoint must check if this user
exists in a database (this database should be implemented) and if the password is
correct. If so, a unique token called JSON Web Token (or JWT for short) is returned.

• /api/news: listens for POST requests that contain a JSON object in the body. The
object must contain a numberOfNews which is an integer indicating the number of
posts that this endpoint should return. The endpoint should search the database for
random posts and return them.

38

Performance Benchmark of Mobile Development Tools

4.1.2 Selection of development tools

We selected nine different development tools to use in implementing applications to be
tested. The following list enumerates the chosen development tools and their relevance for
the benchmark:

• Tools selected to produce web applications:

– React.js: currently the most popular tool to produce Single page Applications.

– Preact: selected to assess whether its low overhead is verified in comparison to
the other react-based tools.

– Next.js: selected to confirm if it is currently the best react-based tool to build
performant web apps.

– Gatsby: was popular but losing market share for Next.js, and thus the com-
parison between them is important.

– Svelte: selected to compare against React-based tools and compare the differ-
ences between interacting with the Real (Svelte) or a Virtual (React) DOM.

• Tools selected to produce hybrid applications:

– Ionic and Capacitor (previously called Cordova): selected because produces
cross-platform hybrid applications.

• Tools selected to produce native applications:

– Kotlin: selected to be the reference of the benchmark due to its native nature.

– React Native: selected because produces cross-platform native applications.

– Expo: selected to compare if the abstractions introduced by Expo have a sub-
stantial impact compared to plain React Native.

All the development tools selected provide a way to identify the application elements
with unique identifiers. To build the functional tests, we used an automation library
called WebdriverIO [72]. This library to identify the application elements, needs unique
identifiers. For web applications, WebdriverIO can easily identify the element if it has
assigned a unique id:

<input

id="Login_Input_Username"

type="text"
placeholder="Username"
name="username" required />

However, this may depend on the environment or from tool to tool. For WebdriverIO to
successfully identify a React Native or Expo application element, we would need to use
the React Native accessibility labels:

<TextInput

accessibilityLabel="Login_Input_Username"

placeholder="Username"
value="username" />

39

Chapter 4

For Kotlin, we would need to assign contentDescription label to the element:

<EditText

android:contentDescription="Login_Input_Username"

android:id="@+id/Login_Input_Username"
android:layout_width="wrap_content"
android:layout_height="wrap_content"

/>

All the implementations source code are open and available at

• https://github.com/jose-donato/savery

Table 4.3 presents a brief summary of the development tools selected.

Table 4.3: Summary of the development tools selected to implement the applications

Application
Type

Development
Tool

Relevance

Web React.js Most popular tool to produce SPA
Preact vs React.js (Normal React vs Low

overhead)
Next.js Becoming the standard to build per-

formant SPA
Gatsby vs Next.js
Svelte vs React.js (Real vs Virtual DOM)

Hybrid Ionic Popular tool to produce hybrid apps
Native Kotlin Reference tool to build native An-

droid apps
React Native Popular tool to build cross-platform

apps
Expo vs React Native (abstractions vs no

abstractions)

4.1.3 Metrics

As proposed in our framework, we selected two different types of metrics: static and
runtime metrics.

Static Metrics

For the static metrics, the benchmark includes application size, line of codes, dependencies
number (and dependencies number only for development), and build times. Except for
application size, the static metrics help to assess the developer experience of each devel-
opment tool.

Although the device’s storage has increased significantly in recent years, in some low-
end and even medium-end devices, small Application size is still crucial, and it was

40

https://github.com/jose-donato/savery

Performance Benchmark of Mobile Development Tools

measured in KB. Lines of code (or LOC) can help to estimate the maintainability of the
software produced. Dependencies number is the number of packages that will be used
in the production build of the application. As this number increases, the final package
will also increase. Development Dependencies number is the number of dependencies
that are used during development. Build Time is the duration (in milliseconds) that
each development tool takes to build the production version of the application. Some
deployment platforms charge more depending on the build duration. Hence, it is important
to keep this value as minimal as possible.

Runtime Metrics

For the runtime metrics, the benchmark contains three metrics: response times, CPU usage,
and RAM consumption. These runtime metrics are the most important type to assess the
performance of the applications, and we inspired by the following great study [3]. We also
believe that they are the best metrics to assess the performance of this type of applications
(i.e., applications for mobile devices).

CPU usage is the percentage of CPU used by each application during a certain interval [3].
“CPU intensive applications may negatively impact other processes running on the device,
decreasing user experience” [3]. An higher CPU usages will have an impact on the battery
duration.

RAM consumption is the amount of memory allocated by the system in MB. Devices can
see their performance “degraded if a high percentage of the available RAM is allocated” [3].

Response Times are the most important metrics to mobile application users. This is the
total duration in ms that some action took to happen. Studies show that “53% of mobile
users abandon sites that take over 3 seconds to load” [73]. If an application response times
are high, it will degrade the user experience and may result in the user never using the
application again.

Once measured, all the metrics presented have one thing in common: the smaller their
value, the better. In Section 4.3.4 we explained how each metric was collected during the
Benchmark Campaign. Table 4.4 presents a summary of the selected metrics.

Table 4.4: Summary of the selected metrics

Type Name Unit

Static Application size -
Lines of code -
Dependencies number -
Dev dependencies number -
Build time milliseconds

Runtime CPU usage %
RAM consumption MB
Response times milliseconds

41

Chapter 4

4.2 Development of Applications

In the second phase, we developed 9 applications following the previously defined Refer-
ence App Specification, each one using one of the different selected development tools.
The development of these applications took an estimated duration of 150-200 hours, i.e.
approximately 1-1.5 persons*month.

The rest of the section is structured as follows. In Section 4.2.1 describes the process of
building the applications. Section 4.2.2 explains how we used functional testing to validate
the applications. Section 4.2.3 outlines the tools that we developed to aid the campaign
and validation process.

4.2.1 Implementing the applications

All the applications were developed in-house. Although this might introduce some bias
in the evaluation, it will be mitigated when the project is open to the community, and
engineers are able to improve or fix the existing implementations. This will also make
possible the addition of other implementations relative to new development tools.

Styling Process

To style the web and hybrid applications, we used a styling solution named tailwindcss
for all web applications and Ionic. With this approach, we reduce the time wasted styling
the applications (because all the styling is reused) and reduce the possible bugs when
implementing this process in each application. Since tailwindcss is not supported on native
applications (at least officially), we opt to not use any additional library to style the
elements on those applications: for the React Native and Expo applications (native), we
used the default styling solutions (through the style React Native prop); for the Kotlin
implementation (also native), we used the popular Material Design library from Google.

Configuration Details for Development Tools

We used Craco to configure and create our React.js application. Although create-react-app
is the most common tool to build React.js applications, it does not allow many custom con-
figurations. For example, at the time of writing create-react-app did not allow customizing
the service worker (and this was needed to implement our reference app specification).

For the react-based implementations (i.e., react.js, next.js, gatsby, preact) we shared a lot
of code since there are a lot of similarities between these development tools, and we tried
to share as much react components as possible to introduce the less amount of bugs.

To implement the svelte application, we used SvelteKit. Even though SvelteKit was at
an early stage at the time of writing, this tool is officially supported by the team behind
Svelte, and we did not encounter any barriers when using it.

We built the Ionic application after the React.js app. We started with this application and
added the needed configurations to make it a valid Ionic project. Ionic documentation was

42

https://tailwindcss.com/
https://github.com/gsoft-inc/craco
https://create-react-app.dev/
https://kit.svelte.dev/

Performance Benchmark of Mobile Development Tools

followed to achieve this [74].

To build the React Native application, we did not use any Expo-related libraries. Although
these libraries are usually good abstractions and fit well with Expo projects, we tried to
develop the React Native application without anything related to Expo to better assess
the implications that it may have.

On the other hand, in the Expo application, we used several libraries provided by Expo
ecosystem which are easy to install in an Expo project and do not require any configurations
in Android Native files.

The other applications (i.e., the applications built with Next.js, preact, and Gatsby) were
built using their official command-line helpers.

Application Details

Regarding authentication, the implementations present a login screen that contains two
fields for the username and password. Once the user types in these fields and clicks
the submit button, an HTTP will be made to the backend login endpoint. Then, the
server will check whether the submitted credentials are correct or not. If so, a unique
token (a JSON Web Token or JWT, more on this) will be retrieved. In the native and
hybrid implementations, this unique token is saved in an encrypted store in the device
for subsequent accesses to the application to avoid the need of logging in again when
the application is restarted. Nowadays, JWT authentication is very common, and this
token must be stored securely because an attacker can impersonate a victim in case he
gets his hands on the victim’s token. In the web applications, we stored the token in the
browser local storage, which is unencrypted. Although in most scenarios this is a bad
practice because browsers’ local storage is not encrypted, we opt to do it to avoid over
complexing the web applications compared to the others. More details on how to achieve
secure authentication systems on web applications can be found in[75].

For the operation, carousel, or feed component, where there was a need for adding several
elements to the screen, we could have used specific libraries that virtualize the elements
(i.e., only render them when they are visible on the screen) to make it more performant.
However, we opt not to do it in the web applications and keep the applications as simple
and with the least number of third-party libraries. As we will see in the following Chapter,
the web applications behaved well without these solutions. On the other hand, in the
validation phase, the native applications failed to pass the tests where a lot of elements
are added to the screen (e.g., in the Operation component) and the applications crashed.
A GitHub issue confirmed our assumption that rendering numerous elements can result in
sluggish and even crash a React Native application [76]. Therefore, this use case needs to
be accounted for and implemented carefully. React Native team published resources on
how to solve this problem [77]. To fix this, we virtualized the elements using FlatList on
React Native/Expo applications and using RecyclerView on Kotlin.

In the future, there is a possibility to add new application versions to the benchmark to
compare how these virtualized solutions impact the performance of the web applications.

Screenshots of one of the implementations can be found in Appendix B and a live imple-

43

Chapter 4

mentation can be found in the following URL:

• nextjs.vitamin-server.dei.uc.pt

Due to time-constraints and some possible lack of knowledge about each development
tool specific from us, we do not exclude the fact that some implementations may have
some problems and not be fully optimized. To mitigate this we tested all the applications
extensively with functional testing in order to find issues, fix them and make sure that
all the applications behave similarly (i.e., follow the previously defined App Reference
Spec). Of course, functional testing cannot understand if the implementations are fully
optimized. Therefore, we will also open the project to the community. This way, the
community can both fix possible issues with the existing implementations and introduce
new implementations using different development tools.

In the Section 4.2.2, we will go through how the applications were validated with the help of
functional testing to prevent that applications with issues proceed to the campaign phase.

Backend Details

Since our reference application spec defined some components that needed external services
(e.g., retrieving posts, authentication with username and password), we developed a simple
auxiliary backend with fastify. This backend serves two different endpoints (defined in
Sec. 4.1.1) that our implementations will then consume for authentication process and
the feed component. When these endpoints are called, the backend communicates with
a database with an Object-Relational Mapping (ORM) called Prisma and retrieves the
desired data to the implementations. The database contains two tables: i) users table:
used to store several users (username and password); ii) news table: used to store several
posts that contain a title, image, description, date, URL.

We tried to keep the backend service as simple as possible since it is not the focus of the
benchmark.

4.2.2 Functional Testing

The functional testing comprises a set of tests to check whether the applications are cor-
rectly implemented or not. The tests that we defined try to emulate what an end-user of
our application would do when navigating through all of its components.

The functional tests navigate through all the application pages in a certain order without
any human-interaction. They check if all application elements have the correct identifiers
and that each element works as expected (application elements and their requirements
listed in Appendix A). A high-level description of the flow followed to execute the functional
tests is presented below:

1. Visit landing page and check if all landing page elements are presented;

(a) Click button to request permissions;

44

https://nextjs.vitamin-server.dei.uc.pt
https://www.fastify.io/
https://www.prisma.io/

Performance Benchmark of Mobile Development Tools

(b) Accept all the required permissions.

(c) Press login link to be redirected to the login page;

2. Visit login page and check if all login page elements are presented;

(a) Insert correct login credentials;

(b) Press login button to be redirected to the home page;

3. Visit homepage and check if all homepage elements are presented;

4. Open navbar to check if all the page links are presented;

5. Visit each component by accessing them in the navbar;

(a) Check if each component elements are presented and if they work as defined in
the Reference App Specification;

6. After all the components are visited, open navbar, press logout button and check if
the user is redirected to the landing page.

To implement these tests we developed a Testing and Measurement Tool that uses
Appium [78] and WebdriverIO [72] to automate this process (more details in Section 4.2.3).

All the source code to implement the functional tests is available at the following URL:

• https://github.com/jose-donato/savery

If all the tests pass, the application under validation is considered valid and can proceed
to the campaign phase.

4.2.3 Auxiliary tools

In this section, we will explain the tools that were developed to support the benchmark.

Testing and Measurement Tool

To support the validation and campaign phases, we built a tool called Testing and Meas-
urement Tool. This tool is responsible for creating and submitting the workload to the
applications that will be running in the target device. Although in the validation phase,
measurements are not gathered, this tool also implements this process. This tool is used in
Preparation Phase to validate the applications with functional testing and in Campaign
Phase to execute the benchmark and gather the measurements.

An interesting challenge posed in front of ourselves because in our benchmark we are
focusing on several types of applications: web, hybrid and native. We needed to select
technologies that helped to test any of these applications. Given this, we only had two
options:

• Use different technologies: one for testing each application type.

45

https://github.com/jose-donato/savery

Chapter 4

• Use technologies compatible with all application types.

The first option would result in redundant tests, since there was a need to implement
the same set of tests multiple times: one for each environment. This would increase the
complexity of the benchmark and would be more time-consuming. Hence, we decided that
we were going to opt for the first option. But another challenge appeared: as it happens
for development tools, there are countless libraries to build automation tests.

To solve this, we analyzed the most popular automation libraries and compared them.
First, we defined several requirements that the ideal automation library should meet:

• Support different popular mobile operating systems (i.e., Android and iOS).
Although in this benchmark we focused only in one Android device, we developed
this tool with the vision that it would be re-used for another rounds that may support
iOS in the future.

• Share tests between multiple application types, i.e., the tests can be-used to
target different types of applications.

• Support writing the tests in JavaScript/TypeScript. JavaScript remains pro-
gramming language most used through the last three years [79], and does not seem
that its adoption will stop anytime soon. Since this project will be open to the
community, write the tool in this language is the natural option. Also, it is the
programming language we are the most familiar with.

• Should be free because the benchmark campaign includes dozens of executions for
each application.

• Should be Open Source. Open technologies are prone to more scrutiny than closed
ones. We are focusing on technologies that have been extensively used and scrutinized
by the community. We are also focusing on technologies that are currently maintained
due to the rapid evolution of the systems under test (applications for mobile devices).

• Must be highly customizable (e.g., support scroll operations, verify that items are
displayed, clicking in elements or in screen positions).

• Should not be cloud-based. This normally means that we have less control and,
hence, less customization is possible.

• Cannot be intrusive. The tool should treat the applications as black-boxes and
not insert custom code in the application under test.

Table 4.5 presents the results of our extensive analysis from multiple sources [80, 81, 82,
83, 84, 85, 86, 87, 88].

We found three main candidates that satisfy the previously-mentioned requirements and
can be used to build the Testing and Measurement Tool: Appium, Selenium, Selendroid,
and TestProject.

We end up choosing Appium over the others because of several reasons: i) Appium sup-
ports multiple platforms (e.g., Android, iOS) as opposed to Selenium that only supports

46

Performance Benchmark of Mobile Development Tools

Table 4.5: Comparison of Popular Automation and Testing Libraries

Name Open
Source

Active Cross-platform Cloud-
based

Language Drivers Agnostic Price Customization

Appium Yes Yes All mobile apps No Ruby,Java,JavaScript,
PHP,Python

Yes Free High

Selenium Yes Yes Only web apps No Java,C#,Perl,Python,
JavaScript,PHP,Ruby

Yes Free High

monkey-
runner

Yes Yes Only native android apps No Java/Kotlin Yes Free Low

Firebase Test
Lab

No - Yes - - Yes Freemium Low

Robotium Yes No Native and hybrid Android
apps

No Java No Free Medium

Calabash Yes Yes Native/Hybrid iOS and An-
droid apps

No Cucumber (natural lan-
guage)

Yes Medium

Cypress Yes Yes Only web applications on
desktop environments

No JavaScript Yes Free High

Kobiton No - All mobile apps Yes Multiple Yes Paid High
XCTest Yes Yes Only iOS native apps No Swift No Free Medium
TestProject Yes Yes All apps for multiple plat-

forms
Yes Multiple Yes Free Medium

Apptim no no no no no no no no
Perfecto No - All apps for multiple plat-

forms
Yes Multiple Yes Paid High

Selendroid Yes No All Android apps No Multiple Yes Free High
KIF Yes Yes Native iOS apps No Swift Yes Free Low
Katalon no no All apps for multiple devices Yes no Yes Freemium no
TestComplete No - Several apps for multiple

devices
Yes - - Paid High

ios-driver Yes No All iOS apps (web, hybrid nat-
ive)

No - Yes Free High

21labs No - All native Android and iOS
apps

Yes DND Yes Freemium Low

Xamarin.UITest No - Native iOS and Android apps No C# No Free Medium
Espresso Yes - Android native apps No Java/Kotlin No Free Medium
Ui Automator - - Android native apps No Java/Kotlin Yes Free High
BrowserStack No - All apps for multiple plat-

forms
Yes Multiple yes Paid High

web environment, and although we are only targeting Android in our benchmark, our
framework can be easily extended to more platforms and future benchmarks may include
other devices; ii) Appium can automate tests for multiple environments (e.g., web, native,
and hybrid); iii) Appium allows us to write the tests with WebdriverIO, a library that has
Node.js bindings (a language we are very familiar with) and re-use these tests across mul-
tiple environments; iv) Selendroid development ceased activity while Appium is maintained
currently maintained; v) TestProject is not used by the community as much as Appium
(TestProject JavaScript Sdk 1 has only 48 weekly downloads on NPM while WebdriverIO,
Appium JavaScript driver, has 861,348 weekly downloads at the time of writing 2); vi) Ap-
pium has a client-server architecture that fits perfectly with the Testing and Measurement
Tool.

It is important to note that Appium abstracts other libraries that appear in Table 4.5 (e.g.,
UiAutomator to communicate with Android applications, XCUITest to communicate with
iOS applications). This exactly what we were looking for and makes possible that from
the same set of tests we can automate different types of applications (i.e., native, hybrid
and web) in different types of devices (e.g., Android, iOS).

Appium has a server-client architecture that fits exactly our requirements. We developed
a client called Testing and Measurement Tool (or TMT) in TypeScript. TMT contains

1https://www.npmjs.com/package/@tpio/javascript-opensdk
2https://www.npmjs.com/package/webdriverio

47

https://appium.io/
https://www.selenium.dev/
https://developer.android.com/studio/test/monkeyrunner
https://developer.android.com/studio/test/monkeyrunner
https://firebase.google.com/docs/test-lab
https://firebase.google.com/docs/test-lab
https://github.com/RobotiumTech/robotium
https://github.com/calabash
https://www.cypress.io/
https://kobiton.com/
https://developer.apple.com/documentation/xctest
https://testproject.io/
https://www.apptim.com/
https://www.perfecto.io/
http://selendroid.io/
https://github.com/kif-framework/KIF
https://www.katalon.com/
https://smartbear.com/product/testcomplete/overview/
https://ios-driver.github.io/ios-driver/
https://21labs.io/
https://docs.microsoft.com/en-us/appcenter/test-cloud/framaeworks/uitest/
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/ui-automator
https://www.browserstack.com/
https://www.npmjs.com/package/@tpio/javascript-opensdk
https://www.npmjs.com/package/webdriverio

Chapter 4

several tests built with the help of WebdriverIO. WebdriverIO has JavaScript bindings
and allowed us to build the tests using this language that we are used to. During the tests’
execution, they are sent to Appium server, which is responsible for forwarding them to
the devices under test and receiving the results (i.e., reporting the test results back to the
Testing and Measurement Tool). In addition to WebDriverIO, we used Mocha and Chai
to help structure our tests.

Since our objective is to make all the contributions of this study open-source (including
the Testing and Measurement Tool), we implemented the tool using TypeScript [89], a
superset of JavaScript, designed to be more scalable and easier to maintain.

The functional tests simulate several human-like operations. In the following list, we
enumerate some of these operations and code snippets on how we achieved them:

1. Clicking buttons: in the following example, we can observe the necessary code to
click a button. The code is straightforward, grabber is an asynchronous function that
receives the application type (e.g., web, hybrid or native), the WebDriverIO client and
the unique identifier that we want to interact with. Then, we wait for WebdriverIO
to find this element (if timeout exceeds this test will fail), finally WebdriverIO client
will send the instruction to click this button.

async function () {
const Login_Button_Submit = await grabber(appType, webdriverIOClient,

"Login_Button_Submit")
await Login_Button_Submit.waitForExist({ timeout: timeout })
await Login_Button_Submit.click()

}

2. Submitting text to input fields: the approach to input fields is similar, we first
select the input fields we want to type and then setValue function provided by
WebdriverIO is used to send the text to the input fields. hideKeyboard is another
function provided by WebdriverIO that can be used to hide the device keyboard after
typing in the input fields.

async function () {
const Login_Input_Username = await grabber(appType, webdriverIOClient,

"Login_Input_Username")
await Login_Input_Username.waitForExist({ timeout: timeout })
const Login_Input_Password = await grabber(appType, webdriverIOClient,

"Login_Input_Password")
await Login_Input_Password.waitForExist({ timeout: timeout })
await Login_Input_Username.setValue("user1")
await Login_Input_Password.setValue("pass1")
await webdriverIOClient.hideKeyboard()

}

3. Scrolling through lists: to perform the scroll operation, we need to define an array
with different operations. If we want to perform a vertical scroll, we simulate the
presses that a user would do in real a device. First, we simulate the finger pressing
in bottom of the screen (y: 1500), then wait and move the finger to the top of the
screen (y: 10). Finally, the finger is released with the "release" action. touchPerform
WebdriverIO function is then called with this array to perform the scroll operation.

48

Performance Benchmark of Mobile Development Tools

If we want to run the scroll multiple times, we can wrap this function in a for loop.
In the following example, the scroll operation will be performed three times with 3.5
seconds of interval.

async function () {
const scroll = [{

action: ’press’,
options: {

x: 0,
y: 1500

},
},
{

action: ’wait’, options: {
ms: 300,

}
},
{

action: ’moveTo’,
options: {

x: 0,
y: 10

},
}, {

action: ’release’,
}]

for (let i = 0; i < 3; i++) {
await webdriverIOClient.touchPerform(scroll);
await webdriverIOClient.pause(3500)

}
}

4. Open notifications bar: opening notifications bar is easily achieved with Webdriv-
erIO. First we can its function openNotifications, then pause will wait for 2 seconds
and, finally, calling pressKeyCode with 4 as an argument (Android Key Code to click
the back button) will close the notifications bar and return to the application.

async function () {
await webdriverIOClient.openNotifications()
await webdriverIOClient.pause(2000)
await webdriverIOClient.pressKeyCode(4)

}

In the Preparation Phase, this tool is only responsible for validating each application
components.

However, in the Campaign Phase, TMT has some more responsibilities. While the tests
are running, this tool also sends commands via the Android Debug Bridge (or ADB) peri-
odically to the connected Android device under test to measure the CPU usage and RAM
consumption. All these measurements and results are then saved into JSON and SQLite
files for further analysis. We followed the proposed folder structure by our framework in
Section 3.4 to organize the outputs of the Benchmark Campaign.

49

Chapter 4

In more detail, while the automation tests are being sent to the target device in the main
thread, and, we used a library called threads.js to spawn another thread responsible for
sending the ADB commands referred in Section 4.3.4 to gather the measurements with an
interval of 200 milliseconds.

There are two different ways to interact with the Testing and Measurement Tool:

• Command-line interface: to facilitate the usage of the tool, we developed a single
command-line interface. Although it is currently more limited, it eases the process
of trying the tool. Fig. 4.5 presents an image of this interface.

• Configuration file: allows more customization of what the tool should do. In
addition to all the options presented in the command-line interface, in the configur-
ation file, we can define: the order in which the components are tested, if the device
should reboot after each execution, customize the interval between each measure-
ment gathering, which components to test, among others. Appendix C presents this
configuration file in more detail.

Figure 4.5: Testing and Measurement Tool command-line interface

The Testing and Measurement Tool needs to be running on a device with a valid Android
SDK installation to be compatible with Appium (more details on the requirements in the
project repository).

Although we did not include iOS devices in our experiment, the stack that we used to build
the Testing and Measurement Tool turns possible to support such devices in the future.
However, some additional work must be done since the current measurements gathering
process uses ADB, which is unavailable in iOS devices.

Analysis Tool

We also developed a simple web application that analyzs the results from the bench-
mark campaign and generates tables and charts for further analysis. We used Next.js,
better_sqlite3 3 to read the benchmark campaign results, danfo-js 4 to process and
structure this data and apexcharts 5 to generate the charts. Some charts presented in
Chapter 5 came from the analysis tool (e.g., Fig. 5.1).

3https://github.com/JoshuaWise/better-sqlite3
4https://danfo.jsdata.org/
5https://apexcharts.com/

50

https://threads.js.org/
https://github.com/JoshuaWise/better-sqlite3
https://danfo.jsdata.org/
https://apexcharts.com/

Performance Benchmark of Mobile Development Tools

The source code for this tool is in the following URL:

– https://github.com/jose-donato/savery

4.3 Benchmark Campaign

In the third phase, after a set of configurations are respected, the Measurement and Testing
Tool presented in the previous section sends three different workloads. At the same time,
the tool collects the previously defined metrics. We will start by explaining how the
setup for the benchmark campaign is structured. Then, we will through the configurations
required for each campaign and, finally, how the measurements were gathered.

4.3.1 Setup

The campaign setup includes three main devices:

• Device running Testing and Measurement Tool: this device is responsible for
running Appium and the TMT. After the connection between the target device and
this one is established, and the configurations are respected (more on configurations
in Section 4.3.2), the benchmark campaign is ready to start. In this experiment, the
device was a virtual machine running Lubuntu, a lightweight Linux distro. The device
has a valid Android SDK installation which is required in order to use ADB. ADB is
the technology used gather the measurements in the Android device (more on this in
Section 4.3.4).

• Target device: where the applications under test will run. This device must be connec-
ted to the TMT via USB. In our experiment, we used a medium-end Android device from
2016 (Honor 8). The device has the following specs: 4 GB RAM; a medium-end CPU
(an Octa-core with 4x2.3 GHz Cortex-A72 & 4x1.8 GHz Cortex A53); GPU Mali-T880
MP4; and Android version 7.

• Remote server: serves the applications and the backend that the applications may
require. This server was deployed on a machine with 8 GB of RAM and high-speed
network transfers to prevent it from becoming a bottleneck of the benchmark. All the
implementations and the backend were deployed with the help of Docker [90] for isolation
between the applications and Nginx Proxy Manager [91]. For each web application, a
Nginx web server was used to serve the respective production build files. For the native
and hybrid applications, another Nginx web server was used to serve the android APKs.
The target device and TMT will make requests to this server during the campaign. The
backend server is also running on this server.

A campaign follows the flow described in Fig. 4.6 and is enumerated below:

1. Testing and Measurement Tool (TMT) initiates the benchmark by requesting the
application to the remote server.

51

https://github.com/jose-donato/savery

Chapter 4

2. TMT receives the application (e.g., next.js application) and starts the connection
to the target device that will run the application requested.

3. TMT connects to the target device and sends the application to the target device. If
it is a web application, target device will open it in the Chrome browser. Otherwise,
it will install the application (i.e., the Android device will install the native APK).
Once the application is loaded and started, TMT will start sending the workload
(workloads defined in Section 4.3.3). This workload contains a Warm-up period to
prepare the application (e.g., accept the required permissions). After the Warm-up
period finishes, the TMT will send the main tests and start querying periodically
the runtime metrics (i.e., CPU usage, RAM consumption and response times). TMT
saves the results to a SQLite database as it receives these values.

4. During the tests’ execution, target device may communicate with the backend that
is being served also in the remote server (e.g., to the login process, or to fetch some
content from the database).

5. TMT finishes sending the workload, saves the results, closes the connection to the
target device, and cleans its usage (cleaning the Chrome browser data in case the
application was a web application, uninstalling the application otherwise).

The benchmark campaign must run a considerable amount of times for each application
to reduce/eliminate the effect of random errors. As we will see in the Section 4.3.3, the
campaign was executed 60 times in each application with two different workloads. The
experimental procedure followed is illustrated in Fig. 4.7. As we can observe, each applic-
ation must be executed several times and each execution contains three different phases
that happen sequentially:

1. Initialization: Application is installed and opened in the device.

2. Workload: The tests are executed (more details on the workloads in Section 4.3.3).

3. Cleanup: Application is closed and uninstalled from the device (in case of web
applications the browser data is cleaned).

In the following section, we will see the set of configurations that must always be respected
before each execution.

Target device
(runs the applications)

Testing and
Measurement Tool

Remote server
(serves the applications
and the backend)CAMPAIGN ARCHITECTURE

1

2

3 4

Figure 4.6: Proposed Benchmark Campaign flow

52

Performance Benchmark of Mobile Development Tools

Execution 1 ... Execution 30

Initialization Workload Cleanup

Execution 2

Application 1 Application 2 ... Application 9

Execution 1 ...
Execution

N

Initializ
ation Workload Cleanu

p

Execution 2 Execution 1 ...
Execution

N

Initializ
ation Workload Cleanu

p

Execution 2

Time

Figure 4.7: Experimental procedure for the benchmarking campaign

4.3.2 Configurations

Before starting each execution, the following configurations must be always respected:

• All the web applications and the backend server must be served with HTTPS. Nginx
Proxy Manager [91] facilitates this process.

• Applications must be isolated between each other in the remote server to have fair
comparisons.

• Permissions are not granted to any application to emulate what happens with real-
world. The workload contains a Warm-up period that accepts the required permis-
sions with automated functional tests.

• Target device must be rebooted before each execution to guarantee that the RAM is
released, and the device is cleaned. Also, after the device is rebooted we must until
the CPU usage and RAM consumption are close to 0%.

• The target device cannot be running any other applications.

• Must have recent image downloaded.

• Target device must have a valid and fast internet connection.

• An image must be recently downloaded because the File Access component requires
a recently downloaded image in the file system.

• After the execution finishes, the application must be fully removed. Appium capab-
ility fullReset was used to achieve this 6.

4.3.3 Workload

The benchmark workload follows the reference app specification previously defined. The
main objective of the workload is to go through the application and test all the components
defined in Section 4.1.1. This process is fully automated, i.e., does not require any human
interaction satisfying the reproducible benchmark requirement.

For our workload we have defined two groups of tests:

6Appium capabilities: https://appium.io/docs/en/writing-running-appium/caps/

53

https://appium.io/docs/en/writing-running-appium/caps/

Chapter 4

• Complete action tests: all application components are tested subsequently with
a small interval in between.

• Single-action tests: perform single-actions in the application, i.e., visit only one
component of the application. Sometimes, users do not open applications and use
all their features but only one or a few.

Before each group of tests starts, a Warm-up Period is required. Once each group starts,
the tests will go through the application components and assess their functionalities. It is
also at this moment that It is important to note that the functional tests associated with
each component are both the same in Single-action or in Complete action test groups. In
total there are 49 component functional tests, and they are listed in Table 4.7.

Warm-up Period

Warm-up Period is responsible for initializing and preparing the application for the sub-
sequent tests. It starts by accepting the permissions needed (e.g., camera, geolocation) in
the landing page, then proceeds to log in and visit each page without testing its function-
alities just to cache its contents in order for all the applications to have the same starting
point (i.e., web, native and hybrid apps). After visiting each component, this process fin-
ishes when the logout button is clicked and the application is at the Landing page again.
At this point, the application is ready to start the primary tests (either the Individual or
the Complete group of tests). The list automated tests from Warm-up period is presented
in Table 4.6.

Table 4.6: Automation test suite for warm-up period.

https://github.com/jose-donato/savery/blob/main/tmt/src/tests/pages/warmup.page.ts
ID Description

t-warmup-landing-0 Landing page is presented
t-warmup-landing-2 Click ask permissions button; Accept permissions (2 in mobile/hybrid applications, 3 in

web applications); Button should be replaced with text "Permissions granted"
t-warmup-landing-2 Clicking login button should redirect to Login page
t-warmup-login-1 Login page should be presented
t-warmup-login-2 Insert username and password in respective input fields
t-warmup-login-3 Clicking submit button should redirect to Home page
t-warmup-bgSync-0 Navigate to Background Sync component
t-warmup-fileaccess-
0

Navigate to File Access component

t-warmup-fileaccess-
1

Click upload image button; Accept storage permission in web applications (native applic-
ations do not require this permission);

t-warmup-feed-0 Navigate to Feed component
t-warmup-
geolocation-0

Navigate to Geolocation component

t-warmup-
notifications-0

Navigate to notifications component

t-warmup-camera-0 Navigate to Camera component
t-warmup-carousel-0 Navigate to Carousel component
t-warmup-operation-
0

Navigate to Operation component

t-warmup-logout-0 Clicking logout button should redirect to Landing page

54

https://github.com/jose-donato/savery/blob/main/tmt/src/tests/pages/warmup.page.ts

Performance Benchmark of Mobile Development Tools

Complete Action Tests

In this group of tests, it is important to define the sequence that the automated tests must
follow, i.e., the order of visiting the components and testing its functionalities. Since some
components are more expensive than others (e.g., Operation component renders a lot of
elements to the screen whereas Geolocation only renders one-paragraph of text), they may
influence the subsequent components. But it is important to test the application as a whole
because there are users that may use all the features from one application subsequently.
To mitigate this, we have done two things: i) defined two different orders for this group;
ii) defined another group of tests (Single-action tests) that aim to test the components
individually and isolate them.

The two orders we have defined to test the components are the following:

O1 Landing →Login →Homepage →Operation →Camera →Carousel →Notifications
→Feed →Geolocation →File Access →Background Sync →Logout

O2 Landing→Login→Homepage→Background Sync→File Access→Feed→Geolocation
→Notification →Camera →Carousel →Operation →Logout

The flow for the Complete-action tests is the following:

1. Install (in case of native and hybrid applications) and open application under test
(handled by Appium);

2. Run Warm-up automated tests;

3. Run only one of O1 or O2 automated tests;

4. Uninstall application under test (in case of native and hybrid applications) and clean
data (handled by Appium);

Single-action Tests

The Single-action Tests try to assess each authenticated component individually. Instead
of testing all the application components subsequently, Single-action only tests a feature
in each execution. The order to run the components is arbitrary, since the application is
removed and cleaned after each execution (an in between each component). Therefore, the
order should not matter in this scenario.

1. for currentComponent in listOfComponents: (i.e., loop through list of authenticated
components)

(a) Install (in case of native and hybrid applications) and open application under
test (handled by Appium)

(b) Run Warm-up automated tests (since we are visiting each component individu-
ally, the warm-up does not need to visit each application authenticated com-
ponent but only the one under test)

55

Chapter 4

(c) Log in

(d) Run currentComponent automated tests

(e) Logout

(f) Uninstall application under test (in case of native and hybrid applications) and
clean data (handled by Appium)

The Table 4.7 enumerates all the automation tests: their IDs and a brief description of
the tasks performed in each test. The tests that only wait an interval to complete are
presented to increase the representativeness of the workload. Focusing on one example,
t-camera-2 waits for 2 seconds when the camera feed is displayed. Without this test,
the execution would proceed instantly to the next test after the camera feed is rendered:
taking a picture from the camera feed. For example, if this application was Snapchat or
Instagram, the user would not click instantly to capture a photo. First, would pose for the
camera, check if everything was fine and only after that would capture the photo. Hence,
the interval aims to achieve similar effect.

Unfortunately, due to time-constraints, we only executed the Complete Action Tests in our
experiment. We executed 30 times each order, i.e., we executed 30 times Complete Action
Tests with the O1 plus 30 times Complete Action Tests with O2 . Chapter 5 presents and
discusses the results of the 60 executions.

4.3.4 Measurements Gathering

To measure the size of web applications, we used the service lighthouse-metrics.com which
provides the total transferred resources size. For native and hybrid applications, this
value is just the size of the final Android Application Pack (or APK). The lines of code
were measured with the help of cloc [92], a great tool to count physical lines of source
code in many programming languages (supported Svelte as opposed to other tools that
we analyzed). The dependencies number was calculated by analyzing the package.json
file. To compute the build times, we used the time command from Unix. For native and
hybrid applications, an additional step was needed. Since these applications need to be
built using Android Studio, this duration also needed to be accounted for. Considering
Expo uses their cloud-based system to build the APKs, the duration did come from this
system instead of Android Studio.

Runtime metrics are trickier to collect, and to respect the framework requirements, we
developed a solution that was non-intrusive and had minimal impact on the benchmark.

To collect the CPU usage, our Measurement and Testing Tool sends the adb top com-
mand every 200 ms during the execution of the tests via USB to the Android device. This
command returns the CPU Usage of the package provided in percentage:

adb shell top -n 1 | grep ’packageName’ | head -1 | awk ’{print $5;}’

After analyzing the duration of each test and concluded that 200 would be small enough
to intersect each test and provide the CPU usage during the execution of the test.In web
applications, the package considered is the mobile browser since it is where this type of ap-
plications is running (e.g. Google Chrome, hence the package was com.android.chrome).

56

lighthouse-metrics.com

Performance Benchmark of Mobile Development Tools

Table 4.7: Automation Tests Suites per Component

https://github.com/jose-donato/savery/blob/main/tmt/src/tests
Page ID Description

Landing t-landing-0 Landing page should be presented when application launches
t-landing-1 Clicking ask permissions button should render text "Permissions Granted"
t-landing-2 Clicking login button should redirect to Login page

Login t-login-1 Login page should be presented
t-login-2 Insert username and password in respective input fields
t-login-3 Clicking submit button should redirect to Home page

Home t-home-1 Home page should be presented
t-home-2 Table with available components should render below
t-home-3 Paragraph on top should say "All permissions granted"
t-home-4 Toggling menu button should open application Navigation Bar
t-home-5 Toggling menu button again should close application Navigation Bar

Background Sync t-bgSync-0 Navigate to Background Sync component
t-bgSync-1 Top paragraph should say user is online
t-bgSync-2 Toggle Wi-Fi; Wait until top paragraph says user is offline
t-bgSync-3 Click get image from cache button should render image from cache below
t-bgSync-4 Wait 2 seconds to observe cached image
t-bgSync-5 Toggle Wi-Fi; Wait until top paragraph says user is online
t-bgSync-6 Click get image from web button should render image from web below
t-bgSync-7 Wait 2 seconds to observe random image

Camera t-camera-0 Navigate to Camera component
t-camera-1 Camera feed is presented
t-camera-2 Wait 2 seconds to observe camera feed
t-camera-3 Clicking take photo button should render image from camera feed below
t-camera-4 Wait 2 seconds to observe image taken
t-camera-5 Toggling switch button should close camera feed

Carousel t-carousel-0 Navigate to Carousel component
t-carousel-1 First image from vertical carousel is presented
t-carousel-2 Scroll and wait two seconds three times (when bottom is reached more images

should be requested and rendered below)
Feed t-feed-0 Navigate to Feed component

t-feed-1 10 posts should render when page mounts
t-feed-2 Change input field to 20
t-feed-3 Click button to request 20 another posts
t-feed-4 20 another posts should be loaded below
t-feed-5 Scroll and wait two seconds two times

File Access t-fileaccess-0 Navigate to File Access component
t-fileaccess-1 Click upload button; Select image from native file system
t-fileaccess-2 Selected image should render below
t-fileaccess-3 Wait 2 seconds to observe image selected

Geolocation t-geolocation-0 Navigate to Geolocation component
t-geolocation-1 Paragraph with user geolocation should be rendered when page mounts

Notifications t-notifications-0 Navigate to Notifications component
t-notifications-1 Click local notification button; Open notification bar; Notification should ap-

pear; Close notification bar
Operation t-operation-0 Navigate to Operation component

t-operation-1 Clicking create small button should render list with 100 rows
t-operation-2 Clicking clear button should remove list of rows
t-operation-3 Clicking create big button should render list with 1000 rows
t-operation-4 Clicking swap rows should swap list of rows
t-operation-5 Scroll to check rendered rows

Logout t-logout-0 Clicking logout button should redirect to Landing page

In the native or hybrid application, the package considered is the respective APK package
name. All implementations and respective package names are listed in Table 4.8.

Regarding RAM Consumption, the process had to be different. We started collecting
the memory a similar process to collecting the CPU usage. The only difference was the

57

https://github.com/jose-donato/savery/blob/main/tmt/src/tests

Chapter 4

Table 4.8: Package names for gathering measurements of each implementation

Type Name Package

Web React.js com.android.chrome
Preact com.android.chrome
Next.js com.android.chrome
Gatsby com.android.chrome
Svelte com.android.chrome

Hybrid Ionic io.ionic.starter
Native Kotlin com.savery.kotlin

React Native com.react_native
Expo com.temp.expo

ADB command:

adb shell dumpsys meminfo packageName | grep TOTAL | head -1 | awk ’{print $2;}’

When we first analyzed the memory consumption by the web applications, we observed
that they all consumed the same amount of memory: around 100MB. This value is low
for this kind of applications and we quickly realized that we were not collecting all the
memory that was being used by Chrome. It turns out that the browser uses three different
processes: i) com.android.chrome; ii) com.android.chrome:privileged_process0; iii)
com.android.chrome:sandboxed_process1. At this point, we were only measuring the
first process. We tried to call the adb dumpsys command for the three packages but with
this approach, the web applications were presenting visible lag and sometimes ended up
crashing. We quickly realized system was running out of memory because of all these adb
commands (1 for CPU and 3 for RAM) being called every 200 milliseconds. It is important
to note that CPU was not a problem since the top command returns all three packages and
we could sum the CPU usage of the three processes. On the other hand, the memory ADB
command only returned the value for one of the processes. Performing 4 requests every
200 milliseconds for web applications and only 2 requests for other types of applications
was completly unfair to the former.

To solve this, instead of measuring the memory consumed by each package, we measured
the memory consumed by the whole system. Therefore, we used the following command
to gather the memory used by the system in MB every 200 milliseconds.

adb shell cat /proc/meminfo

Finally, the response times, in our study, correspond to the test duration in ms. We
opt to not include code to collect these values directly in the applications source code
because, as said before, we treated all the applications as a black box. Therefore, we use
the duration of each test to compare the different applications in terms of how much time
does it take for each application to complete a task. TMT measured this value with the
help of the perf_hooks module from Node.js [93]. In all the tests, TMT ticks the instant
immediately before the test starts and immediately after it ends. The subtraction between
these two values provided the test duration in milliseconds.

58

Chapter 5

Results and Discussion

As explained in the previous chapter, we implemented nine applications with the same
set of features by using different popular development tools. Then, with automated func-
tional testing, the implemented applications were validated. Once all the applications were
validated, a benchmark campaign was conducted.

This chapter presents the results of 60 executions of Complete-action Tests of each applic-
ation in two different orders (i.e., 30 executions with O1 and 30 executions with O2).
This chapter is divided into two different parts: i) the first four sections analyze the
runtime measurements and tries to assess which applications are faster (in terms of re-
sponse times), and more efficient (in terms of CPU and memory usage); ii) Section 5.5
analyzes the static measurements. The goal of static measurements is to provide some
insights about the maintainability (comparing lines of code, dependencies number, etc.)
and developer experience (comparing the build times) of each tool.

These experiments have as objectives to demonstrate the applicability of the pro-
posed framework, i.e., that it could be used in practice to compare different development
tools, and to analyze and compare the performance of different applications, and
thus understand which development tools is best suited for each use case.

The complete results are included, together with the remaining materials of this work in:

• https://savery.dei.uc.pt

Table 5.1 enumerates the identifiers of each application presented in the charts and presents
a brief summary of the selected metrics (further detailed in Section 4.1.3).

Table 5.1: List of Application types and identifiers and summary of the selected metrics

Type Name Identifier

Hybrid Ionic h_ionic
Native Kotlin n_kotlin

React Native n_react_native
Expo n_expo

Web React.js w_reactjs
Preact w_preact
Next.js w_nextjs
Gatsby w_gatsby
Svelte w_svelte

Type Name Unit

Static Application size -
Lines of code -
Dependencies number -
Dev dependencies number -
Build time milliseconds

Runtime CPU used by each application
package

%

RAM consumed by the system MB
Response times milliseconds

59

https://savery.dei.uc.pt/

Chapter 5

5.1 Overall results

This section presents an analysis of the results obtained during the benchmarking cam-
paign. We present and analyze the average value of the obtained results in terms of total
tests duration (ms), CPU Usage (%), and RAM Consumption (MB). As explained before,
each experiment was repeated 60 times for each application, and therefore the results cor-
respond to the average of all the measures gathered throughout the tests. Table 5.2 present
an overview of the results, which are discussed below.

Table 5.2: Average (and max) results

App ID Avg total
test dura-
tion

Avg dura-
tion (Max)

Avg CPU
(Max)

Avg RAM
(Max)

h_ionic 120708.15 1855.73 (13965.30) 6.93 (90) 2088.24 (2979.58)
n_expo 148148.16 2405.48 (13465.44) 5.81 (89) 1952.24 (2243.23)
n_kotlin 136799.97 2177.46 (16770.84) 5.50 (86) 1943.84 (2621.90)
n_react_native 147009.25 2382.49 (13423.80) 5.65 (103) 1941.76 (2245.21)
w_gatsby 134379.05 2130.14 (13354.86) 9.09 (85) 2108.38 (2958.99)
w_nextjs 130841.10 2057.95 (13378.70) 9.00 (82) 2101.60 (2885.66)
w_preact 132625.58 2092.96 (13371.45) 9.01 (74) 2121.36 (2854.06)
w_reactjs 133216.95 2106.54 (13386.19) 9.16 (92) 2095.66 (2801.26)
w_svelte 137299.84 2188.56 (13739.12) 11.12 (79) 2123.47 (2652.79)

The average tests’ duration is depicted in Fig. 5.1, Surprisingly Ionic, the hybrid ap-
plication, presented the fastest average response times with all web applications as close
competitors. This was not expected because, typically, cross-platform tools come with the
penalty of performance. However, our results showed the opposite for Ionic, which, accord-
ing to Table 5.2, was 1.133 times faster than Kotlin (a difference of around 16 seconds),
a native Android application, to complete all tests from the campaign. Comparing to
Next.js, the fastest web application, Ionic was 1.084 times faster. Regarding the web ap-
plications, the slowest, on average, to complete all the tests was Svelte, and the fastest
was Next.js. However, this difference was around 6.5 seconds. This difference is even lower
if we only consider React-based web applications: 3.5 seconds. The slowest React-based
application to complete all the tests was Gatsby. Next.js and preact achieving the lowest
response times between web applications was expected since both development tools are
built with performance as the primary requirement.

This difference is more significant if we compare the native and hybrid applications: around
26.3 seconds on average between Ionic and React Native. We also highlight that the
React Native application was only 1.1 seconds faster than Expo, which shows that if we
only consider response times, the abstractions introduced by Expo (which bring many
advantages) are worth it since the response times are so similar.

The results for CPU Usage are depicted in Fig. 5.2, with the numbers available in
Table 5.2. As expected, the React-based web applications behaved similarly (again with
Next.js, 9.00, and preact, 9.01 as the more efficient), which was expected since they are
built on top of React. On the other hand, we can observe that Svelte was far more expensive
in terms of CPU consuming over 1.214 times more than React.js, proving that interacting

60

Results and Discussion

h_
ion
ic

n_
ex
po

n_
ko
tlin

n_
re
ac
t_
na
tiv
e

w_
ga
tsb
y

w_
ne
xtj
s

w_
pr
ea
ct

w_
re
ac
tjs

w_
sv
elt
e

3700

3336

2973

2609

2246

1882

1518

1155

791

428

64

D
u
ra
ti
o
n
(m
s)

Figure 5.1: Results Tests Duration (ms) per application.

with the Real DOM is an expensive operation, while, React approach of abstracting this
process is more efficient.

h_
ion
ic

n_
ex
po

n_
ko
tlin

n_
re
ac
t_
na
tiv
e

w_
ga
tsb
y

w_
ne
xtj
s

w_
pr
ea
ct

w_
re
ac
tjs

w_
sv
elt
e

18

16

14

13

11

9

7

5

4

2

0

C
P

U
 U

sa
g

e
(%

)

Figure 5.2: Results for CPU Usage (%) per application.

Between the native applications, as expected, Kotlin used the most negligible percentage
of CPU and used around 1.260 times fewer than Ionic, the most expensive native tool,
and 2.022 times fewer Svelte, the slowest overall. Again, Expo and React Native presented
similar results favoring, again, React Native.

Regarding Memory Consumption, assuming that the only application consuming rel-
evant memory in the system was the application under test (and we ensured this with our
set of configurations, cf. Section 4.3.2), web applications were again the applications that
used more resources. When running the web applications tested, the system used similar
amounts of memory. Also, close to CPU usage results, Ionic presented similar usages to the
web applications, which was expected since this development tool uses web technologies
under the hood.

In general, the results showed that Ionic is a fast solution if we can afford to use more

61

Chapter 5

h_
ion
ic

n_
ex
po

n_
ko
tlin

n_
re
ac
t_
na
tiv
e

w_
ga
tsb
y

w_
ne
xtj
s

w_
pr
ea
ct

w_
re
ac
tjs

w_
sv
elt
e

3000

2850

2700

2550

2400

2250

2100

1950

1800

1650

1500

R
A
M
C
o
n
su
m
p
ti
o
n
(M
B
)

Figure 5.3: Results for RAM Consumption (MB) per application.

CPU and memory. Like Ionic, web applications remain an interesting option, providing
fast response time while consuming more resources. If we do not have resource constraints,
web applications are a viable alternative to other types of applications. Also, the difference
between Expo and React Native is not significant, which means that Expo can be a viable
alternative to produce React Native applications with great additions (e.g., producing
applications for more platforms than iOS and Android). Finally, for the use cases that our
campaign covered, React-based tools are faster and more efficient than Svelte. Between
the React-based, Next.js and preact presented the best results in both resources efficiency
and response times, but the differences are minimal. In situations where there are few
resources, Expo, Kotlin, or React Native should be used as they are more efficient than
the competitors.

5.2 Test Duration

This section analyzes the response time (or test duration) results during the benchmarking
campaign. We analyze the time (ms) that each application took to complete the tests.
Since the experiment was repeated 60 times for each application, the presented duration
is an average value of all the executions. Table 4.7 enumerates the list of tests (i.e.,
their identifiers and descriptions). There are in total 49 tests (presented in Table 4.7),
and Fig. 5.4 presents the average time taken to complete each test per application. We
primarily focused on the tests covering the scenarios where web applications usually fall
behind compared to native ones to answer the dissertation title.

In tests that involve interacting with elements (e.g., typing in an input field) such as
t-login-2 and t-feed-2, the applications that use web technologies (web applications
and ionic) were faster than React Native, Expo, or Kotlin (native applications). Amongst
the applications that use web technologies, we can also observe that Svelte is slightly slower
in this use case. This suggests that web applications and Ionic are more viable for situations
when interacting with input elements is necessary (e.g., code editors, note-taking apps).

62

Results and Discussion

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

t-
la
n
d
in
g-
0

t-
la
n
d
in
g-
1

t-
la
n
d
in
g-
2

t-
lo
gi
n
-1

t-
lo
gi
n
-2

t-
lo
gi
n
-3

t-
h
o
m
e-
1

t-
h
o
m
e-
2

t-
h
o
m
e-
3

t-
h
o
m
e-
4

t-
h
o
m
e-
5

t-
b
gS
yn
c-
0

t-
b
gS
yn
c-
1

t-
b
gS
yn
c-
2

t-
b
gS
yn
c-
3

t-
b
gS
yn
c-
4

t-
b
gS
yn
c-
5

t-
b
gS
yn
c-
6

t-
b
gS
yn
c-
7

t-
ca
m
er
a-
0

t-
ca
m
er
a-
1

t-
ca
m
er
a-
2

t-
ca
m
er
a-
3

t-
ca
m
er
a-
4

t-
ca
m
er
a-
5

t-
ca
ro
u
se
l-
0

t-
ca
ro
u
se
l-
1

t-
ca
ro
u
se
l-
2

t-
fe
e
d
-0

t-
fe
e
d
-1

t-
fe
e
d
-2

t-
fe
e
d
-3

t-
fe
e
d
-4

t-
fe
e
d
-5

t-
fi
le
ac
ce
ss
-0

t-
fi
le
ac
ce
ss
-1

t-
fi
le
ac
ce
ss
-2

t-
fi
le
ac
ce
ss
-3

t-
ge
o
lo
ca
ti
o
n
-0

t-
ge
o
lo
ca
ti
o
n
-1

t-
n
o
ti
fi
ca
ti
o
n
s-
0

t-
n
o
ti
fi
ca
ti
o
n
s-
1

t-
n
o
ti
fi
ca
ti
o
n
s-
2

t-
o
p
er
at
io
n
-0

t-
o
p
er
at
io
n
-1

t-
o
p
er
at
io
n
-2

t-
o
p
er
at
io
n
-3

t-
o
p
er
at
io
n
-4

t-
o
p
er
at
io
n
-5

D
u
ra
ti
o
n
 (
m
s)

h_ionic n_react_native n_expo n_kotlin w_gatsby w_nextjs w_preact w_reactjs w_svelte

Figure 5.4: Average duration (ms) per test for each application.

Toggling the navigation bar (also called drawer in native environments) occurs in tests
t-home-4 and t-home-5. In these tests, web-based technologies presented the fastest
results again. This was expected since the other applications add by default an animation
that delays the appearance and removal of the drawer.

t-bgSync-2, t-bgSync-3, and t-bgSync-5 are three tests that aim to assess the offline
capabilities of each application. Although all web applications took more time (around
two more seconds) than native and hybrid applications to realize that they had no internet
connection (t-bgSync-2), some of them (i.e., preact, Next.js and React.js) were faster than
all the others to realize that they were connected to the internet again (t-bgSync-5). As for
retrieving an image from the cache (t-bgSync-3), native and hybrid tools performed again
way better than all web applications except for Svelte. We can conclude that although
the web applications tested can provide offline functionalities (e.g., retrieving content from
cache, reacting to the lack of internet), native and hybrid applications are still better for
this use case.

Tests that used native features such as Geolocation (t-geolocation-1), Camera (t-camera-1
and t-camera-3) or accessing the file system (t-fileaccess-2)

Rendering an image from the file system was faster in all web-based applications. Also,
similar results are observed when accessing the geolocation of the device. Regarding the
camera usage, while accessing its feed was similar in all applications, rendering an image
from the camera feed to the screen was also faster in web-based technologies except for
Svelte. This shows that web applications (and Ionic) are already a fast alternative to native
applications when we need to access native features such as the ones mentioned.

Regarding loading content from outside sources (t-bgSync-6, t-feed-1, t-feed-4), and
t-carousel-1), all the applications take similar time. We highlight the test t-feed-1
where Next.js excels between the web-based applications because of Incremental Static
Regeneration. This feature provided by Next.js allows the user to be always presented
with instant content (more detailed in the article [94]).

Finally, we highlight the operations tests where hundreds of items are added to the
screen (t-operation-1 and t-operation-4), swapped (t-operation-2) and removed

63

Chapter 5

(t-operation-3). It is odd to observe that the web-based technologies behaved similarly
to the native applications (Kotlin, React Native, and Expo) in the tests that the elements
are added to the screen because, as opposed to the latter, the former implementations
did not virtualize the elements (i.e., only render the elements on the screen and loading
others only when they are visible). If the results are close while web-based applications
do not virtualize the elements, if they use virtualized solutions (e.g., react-virtualized [95]
for React-based), we think the results would favor them. The benefits of virtualizing ele-
ments are visible on t-operation-2 and t-operation-3 when swapping or removing these
elements. In these tests, native applications that virtualize the elements presented faster
results since they only need to bring to memory the visible elements to the screen. There-
fore, virtualizing solutions should always be considered for use cases where elements are
added to the screen. In addition, although Ionic does not virtualize the elements, it shows
faster results which suggest that it handles these use cases better than web applications.

5.3 CPU Usage

This section presents an analysis of CPU used by the application under assessment in
each test. We analyze the CPU that each application used during the tests. Since the
experiment was repeated 60 times for each application, the presented CPU is an average
value of all the executions. Fig. 5.5 presents the average CPU usage in percentage per test
for each application.

0

5

10

15

20

25

t-
la
n
d
in
g-
0

t-
la
n
d
in
g-
1

t-
la
n
d
in
g-
2

t-
lo
gi
n
-1

t-
lo
gi
n
-2

t-
lo
gi
n
-3

t-
h
o
m
e-
1

t-
h
o
m
e-
2

t-
h
o
m
e-
3

t-
h
o
m
e-
4

t-
h
o
m
e-
5

t-
b
gS
yn
c-
0

t-
b
gS
yn
c-
1

t-
b
gS
yn
c-
2

t-
b
gS
yn
c-
3

t-
b
gS
yn
c-
4

t-
b
gS
yn
c-
5

t-
b
gS
yn
c-
6

t-
b
gS
yn
c-
7

t-
ca
m
er
a-
0

t-
ca
m
er
a-
1

t-
ca
m
er
a-
2

t-
ca
m
er
a-
3

t-
ca
m
er
a-
4

t-
ca
m
er
a-
5

t-
ca
ro
u
se
l-
0

t-
ca
ro
u
se
l-
1

t-
ca
ro
u
se
l-
2

t-
fe
e
d
-0

t-
fe
e
d
-1

t-
fe
e
d
-2

t-
fe
e
d
-3

t-
fe
e
d
-4

t-
fe
e
d
-5

t-
fi
le
ac
ce
ss
-0

t-
fi
le
ac
ce
ss
-1

t-
fi
le
ac
ce
ss
-2

t-
fi
le
ac
ce
ss
-3

t-
ge
o
lo
ca
ti
o
n
-0

t-
ge
o
lo
ca
ti
o
n
-1

t-
n
o
ti
fi
ca
ti
o
n
s-
0

t-
n
o
ti
fi
ca
ti
o
n
s-
1

t-
n
o
ti
fi
ca
ti
o
n
s-
2

t-
o
p
er
at
io
n
-0

t-
o
p
er
at
io
n
-1

t-
o
p
er
at
io
n
-2

t-
o
p
er
at
io
n
-3

t-
o
p
er
at
io
n
-4

t-
o
p
er
at
io
n
-5

C
P
U
 U
sa
ge
 b
y
p
ac
ka
ge
 (
%
)

h_ionic n_react_native n_expo n_kotlin w_gatsby w_nextjs w_preact w_reactjs w_svelte

Figure 5.5: CPU Usage by package (%) per application and test

Overall, it is clearly visible in Fig. 5.5 that native applications (marked with triangles)
used less CPU than all the other applications throughout the tests. Also, Ionic (marked
with a dash) uses less than web applications (marked with circles).

Regarding native applications, Kotlin presents as a clear winner in terms of CPU usage.
Kotlin is more efficient throughout all the tests, except when accessing native features (e.g.,
t-camera-5, t-notifications-1, t-geolocation-1). In two of these tests, Kotlin is the
application that uses more CPU. We can conclude that we should avoid using Kotlin when
accessing native features is required (if we are concerned with the CPU requirements and,
consequently, the devices’ battery). On the other hand, Expo presents slightly higher CPU

64

Results and Discussion

usages than React Native. This was expected due to the abstractions and little overhead
introduced by Expo. However, the differences are minimal. We also highlight that although
Kotlin presents better results than these two applications, in the use cases related to native
features (and overall in all scenarios tested), React Native and Expo the CPU usage remains
low and to some degree constant when compared to the others. Therefore, for intensive
applications that may require accessing native features, these cross-platform applications
are an efficient a solution.

If we compare Ionic with, for example, Preact (representing the web applications) we can
observe that Ionic always uses fewer CPU than the web applications in all the use cases
tested. We can conclude that in scenarios with CPU-restrictions, we can transform a web
application into a native one using Ionic, and it does not impact the CPU usage. In fact,
the application would use slightly less CPU.

Regarding the web applications between themselves, we can observe that all of them behave
similarly throughout the tests, except for Svelte. As said before, Svelte interacts with the
Real DOM and this operation proves to be more expensive than interacting with a virtual
DOM as react-based applications do. Hence, in scenarios where there are more limited
CPUs, React.js alternatives should be selected over Svelte.

5.4 RAM Consumption

This section presents an analysis of the memory allocated by the system during the bench-
marking campaign. We present and analyze the RAM Consumption (MB) for each test
per application. As explained before, each experiment was repeated 60 times for each ap-
plication, and therefore the results presented correspond to the average of all the memory
gathered throughout the tests. Fig. 5.6 presents the total memory (RAM) used by the
system.

1750

1850

1950

2050

2150

2250

2350

t-
la

n
d

in
g-

0

t-
la

n
d

in
g-

1

t-
la

n
d

in
g-

2

t-
lo

gi
n

-1

t-
lo

gi
n

-2

t-
lo

gi
n

-3

t-
h

o
m

e-
1

t-
h

o
m

e-
2

t-
h

o
m

e-
3

t-
h

o
m

e-
4

t-
h

o
m

e-
5

t-
b

gS
yn

c-
0

t-
b

gS
yn

c-
1

t-
b

gS
yn

c-
2

t-
b

gS
yn

c-
3

t-
b

gS
yn

c-
4

t-
b

gS
yn

c-
5

t-
b

gS
yn

c-
6

t-
b

gS
yn

c-
7

t-
ca

m
er

a-
0

t-
ca

m
er

a-
1

t-
ca

m
er

a-
2

t-
ca

m
er

a-
3

t-
ca

m
er

a-
4

t-
ca

m
er

a-
5

t-
ca

ro
u

se
l-

0

t-
ca

ro
u

se
l-

1

t-
ca

ro
u

se
l-

2

t-
fe

e
d

-0

t-
fe

e
d

-1

t-
fe

e
d

-2

t-
fe

e
d

-3

t-
fe

e
d

-4

t-
fe

e
d

-5

t-
fi

le
ac

ce
ss

-0

t-
fi

le
ac

ce
ss

-1

t-
fi

le
ac

ce
ss

-2

t-
fi

le
ac

ce
ss

-3

t-
ge

o
lo

ca
ti

o
n

-0

t-
ge

o
lo

ca
ti

o
n

-1

t-
n

o
ti

fi
ca

ti
o

n
s-

0

t-
n

o
ti

fi
ca

ti
o

n
s-

1

t-
n

o
ti

fi
ca

ti
o

n
s-

2

t-
o

p
er

at
io

n
-0

t-
o

p
er

at
io

n
-1

t-
o

p
er

at
io

n
-2

t-
o

p
er

at
io

n
-3

t-
o

p
er

at
io

n
-4

t-
o

p
er

at
io

n
-5

R
A

M
 C

p
n

su
m

p
ti

o
n

s
b

y
th

e
sy

st
em

 (
M

B
)

h_ionic n_react_native n_expo n_kotlin w_gatsby w_nextjs w_preact w_reactjs w_svelte

Figure 5.6: RAM Consumption by the system (MB) per application and test

The memory consumption chart is similar to the CPU usage chart in that native applica-
tions always allocate less resources (in this case memory) than the competitors. Overall,

65

Chapter 5

since the results are similar, the conclusions regarding memory consumption are also sim-
ilar to the ones described in the last section. It is clear that the native applications consume
way fewer memory than the web-based applications across all the tests. We highlight again
that in scenarios with memory or CPU constraints, all the native applications are better
alternatives. In between native applications, Kotlin has a slight advantage over React Nat-
ive and Expo except in the scenarios that interact with native features (e.g., geolocation,
file access or camera).

Between the web-based applications, the tests that required more memory are the ones that
involve adding a lot of elements to the screen (e.g., carousel or feed). In these scenarios,
using a lot of memory may degrade the devices’ performance [3] which is visible if we cross
the memory results with the test duration presented in Section 5.2. This also visually
observed during the tests’ execution (i.e., the web applications were more sluggish in these
tests). On the other hand, the experience was far more fluid in the three native applications.
This is explainable if we remember that this type of application uses virtualized solutions
to render elements to the screen. Nowadays, the majority of popular applications are
data-driven (mostly from external sources similar to our carousel component). In order to
improve the user experience, when implementing any application type mentioned in this
study, virtualized solutions should also be considered.

5.5 Static Measurements

Static Measurements is the last section of result analysis. This section presents an analysis
of measurements gathered before executing the applications. Although this type of meas-
urements was not the primary focus of this benchmark, the four different static metrics
allow some more interesting comparisons between the development tools (e.g., about the
source code and the development process). Also, collecting this type of metrics was im-
portant to prove that our framework is extensible not only to gather measurements during
the execution of the applications but also before. Application size is related to the per-
formance of the applications, but the other metrics are related to the developer experience
(build times) and to the maintainability of the development tools under assessment. The
build duration was collected several times for each application, and therefore the value
presented correspond to an average. Table 5.3 presents our findings.

Regarding the application size, it is expected and observable that web applications a far
smaller value than the other type of applications. In between the web applications, Svelte
presented the smallest value with around 54.2 KB. This expected because Svelte compiles
everything at build time, and therefore does not need to bundle the whole library code
to make computations at runtime as React and many other development tools do [34].
Consequently, Svelte application size for small applications is lower than a react-equivalent
application but as the application size grows this may not be verified (more details are
explored in repository [96])

preact presents the smallest size of all the React-based applications. This was also expected,
since preact is a minimalistic version of React.js. The Ionic application size is 5 MB, which
is great for a Native Android application. It is only 1.3 times bigger than Kotlin application
size. On the other hand, Expo is around 10x larger. Since we were using Expo, to build

66

Results and Discussion

Table 5.3: Static measurements gathered per application

App ID Size
(KB)

LoC Total
depend-
encies
(dev)

Avg.
build time
(s)

h_ionic 5301.00 1737 26 (12) 61.53
n_expo 54160.49 1368 25 (3) 198.00
n_kotlin 4002.88 2588 12 (0) 9.85
n_react_native 32704.91 1340 24 (4) 67.53
w_gatsby 211.00 1530 5 (6) 39.38
w_nextjs 243.00 1658 4 (5) 28.12
w_preact 60.50 1657 5 (8) 85.33
w_reactjs 190.00 1610 6 (7) 19.70
w_svelte 54.20 1458 6 (7) 23.30

the application, the Expo Cloud system was mandatory to build the application. As we
can observe with React Native, which we were to build the APK locally, had an application
size 1.66 times lower than Expo. This is also related to the abstractions introduced by
Expo, which results in a bigger application size.

Regarding the dependencies number, Ionic required a high number to transform a valid
React.js app (13 dependencies) into a valid hybrid app (38 dependencies). Also worth
noting that Gatsby, Next.js and preact required less than 5 dependencies to be built.

Implementing the Expo or React Native application took fewer lines of code than all the
other applications. Considering that Expo and React Native are cross-platform tools that
can run on several platforms, this measure suggests that these tools seem easier to maintain
than the native application Kotlin. We also highlight Svelte that took the fewest lines of
code among the web applications.

Concerning the build times, Craco, the tool used to build the React.js app, presented the
best results with an average of 19.70 seconds to build the production version. Next.js also
showed good results: under half of a minute. Both these tools use webpack under-the-
hood. Svelte, which presented faster build times than Next.js but inferior to Craco, uses a
tool called Rollup. The comparison between the different JavaScript bundler tools are out
of the scope, but a great comparison is provided in the study [97].

5.6 Threats to Validity

In this section, we discuss the points that threat the validity of the experimental results.

T1 Representativeness of the Reference App Spec: A limitation in several studies
is the lack of representativeness of the applications under assessment. To mitigate
this issue, we analyzed the most popular applications and their features. Then, we
built a Reference App Spec that covers the majority of the use cases observed.

67

Chapter 5

T2 Applications developed in-house: Although this might introduce some bias in
the assessment, we tried to mitigate it by following a reduced yet solid set of the best
development practice. This will be further mitigated as this will be mitigated once
the project is open to the community. Engineers will then be able to improve or fix
the existing implementations (e.g., some applications may implement the features in
a non-optimized way) and to add new development tools.

T3 Automation Testing technologies overhead: It is possible that the technologies
selected to automate the functional tests (i.e., WebdriverIO and Appium) may in-
troduce some overhead. However, this effect should be similar for all the alternatives
considered, and therefore have a reduced impact in the relative comparisons. Fur-
thermore, we analyzed several automation libraries and WebdriverIO, and Appium
were the most popular ones (cf. Section 4.2.3) extensively used by the community.
Also, the majority of cloud-base systems for automation are built on top of them [98].
The scrutiny that these tools have already been subjected to mitigate this threat.

T4 Only one device used: during the benchmark campaign, we only executed the
applications in one medium-end Android device. Although this helped draw com-
parisons for this range of devices, the same may not be verified in smartphones with
other specifications (e.g., web applications in devices with more memory available
may present faster results). To address this we propose to add more devices to the
benchmark in the future.

68

Chapter 6

Conclusion and Future Work

The huge offer of development tools to produce mobile applications makes the process of
selecting one very difficult. Developers normally feel overwhelmed and end choosing the
wrong tool for the job. Hence, there is a clear need for tools and principles to assess
different development tools that already exist and the ones that might appear.

This study proposes a new framework for the assessment of different development tools cap-
able of producing mobile applications considering several properties, such as performance,
reliability, and dependability. As it is not feasible to directly compare these development
tools, the framework defines a methodology where we compare representative applications
instead.

To demonstrate our framework, we designed a concrete benchmark focused on performance
that compared nine different development tools popular in the JavaScript community and
Kotlin as a reference for native applications. Based on an extensive analysis of the popular
mobile applications, we defined a set of representative features that the applications imple-
mented. We also developed an auxiliary tool to support the benchmark campaign, which
automates functional tests and collects metrics carefully selected to assess the applications’
performance. Finally, the benchmark concludes with an analysis of the campaign results.

The results show that our framework can indeed be used to compare different development
tools. Our findings showed that even though Ionic was less efficient in terms of resources
(i.e., Memory consumption and CPU usage), it presented the fastest response times. Also,
the native applications were the most efficient but presented slower response times. The
differences between Expo and React Native are not significant, which demonstrates that
Expo can facilitate the development of cross-platform applications (even supporting more
platforms) without compromising their performance. We observed that web applications
are already a viable alternative to native applications in most scenarios and present faster
response times at the cost of higher memory and CPU usages. In between web applications,
tools that are built with performance as the first requirement (i.e., Next.js and preact)
presented as the fastest and more efficient applications.

As future work, we have the main objective of opening the project to the community.
This would help not only improving the existing implementations, but also to add more
development tools. Once there are significant changes, we plan to execute more benchmark
rounds.

69

We also plan on supporting other type of devices. First, supporting other Android devices
should easy to accomplish. In addition, a more ambitious goal for the future is to support
iOS development tools and iOS devices. Although this may impose some challenges, our
framework was designed to support any type of device and a huge set of development
tools. In our benchmark, we also used technologies that can be extended to support the
iOS environment.

During the results analysis and the benchmark campaign, we observed that some applic-
ations may benefit with certain optimizations (e.g., virtualizing elements in web applic-
ations). Creating different versions of the existing implementations can be added to the
project for future rounds, for example, using virtualized solutions to render content to the
screen for the web and hybrid applications.

Although our experiment was focused on performance, the framework is designed to sup-
port other properties and the benchmark can be extended to support them. For example,
we can add properties such as dependability (by injecting faults) or security (by injecting
attacks).

70

References

[1] Y. Lin, “10 MOBILE USAGE STATISTICS EVERY MARKETER SHOULD KNOW
IN 2021 [INFOGRAPHIC].” [Online]. Available: https://www.oberlo.com/blog/
mobile-usage-statistics

[2] S. O’Dea, “Number of smartphone users by country as of September 2019
(in millions)*.” [Online]. Available: https://www.statista.com/statistics/748053/
worldwide-top-countries-smartphone-users/

[3] M. Willocx, J. Vossaert, and V. Naessens, “Comparing performance parameters of
mobile app development strategies,” in Proceedings of the International Conference
on Mobile Software Engineering and Systems, 2016, pp. 38–47.

[4] S. Richard and P. LePage, “What are Progressive Web Apps?” [Online]. Available:
https://web.dev/what-are-pwas/

[5] I. Malavolta, “Beyond native apps: web technologies to the rescue! (keynote),”
in Proceedings of the 1st International Workshop on Mobile Development - Mobile!
2016. Amsterdam, Netherlands: ACM Press, 2016, pp. 1–2. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3001854.3001863

[6] Z. Bowden, “Microsoft announces Windows 11 will be able to run Android apps,”
Jun. 2021, section: article. [Online]. Available: https://www.windowscentral.com/
microsoft-announces-windows-11-will-be-able-run-android-apps

[7] Thurrottfeed, “Microsoft Worked with Google to Bring PWAs to the Play Store,”
Jul. 2020, section: Dev. [Online]. Available: https://www.thurrott.com/dev/237715/
microsoft-worked-with-google-to-bring-pwas-to-the-play-store

[8] K. Maida, “How to Manage JavaScript Fatigue,” Dec. 2020. [Online]. Available:
https://auth0.com/blog/how-to-manage-javascript-fatigue/

[9] TechEmpower, “TechEmpower/FrameworkBenchmarks: Source for the TechEmpower
Framework Benchmarks project,” Oct. 2020. [Online]. Available: https://github.com/
TechEmpower/FrameworkBenchmarks

[10] ScienceDirect, “Traditional Web Application,” Dec. 2020. [Online]. Available:
https://www.sciencedirect.com/topics/computer-science/traditional-web-application

[11] A. Gajdos, “Single-Page Application vs Multiple-Page Application: Which
One To Choose For Your Project,” Apr. 2020. [Online]. Available: https:
//andrejgajdos.com/single-page-application-vs-multiple-page-application/

71

https://www.oberlo.com/blog/mobile-usage-statistics
https://www.oberlo.com/blog/mobile-usage-statistics
https://www.statista.com/statistics/748053/worldwide-top-countries-smartphone-users/
https://www.statista.com/statistics/748053/worldwide-top-countries-smartphone-users/
https://web.dev/what-are-pwas/
http://dl.acm.org/citation.cfm?doid=3001854.3001863
https://www.windowscentral.com/microsoft-announces-windows-11-will-be-able-run-android-apps
https://www.windowscentral.com/microsoft-announces-windows-11-will-be-able-run-android-apps
https://www.thurrott.com/dev/237715/microsoft-worked-with-google-to-bring-pwas-to-the-play-store
https://www.thurrott.com/dev/237715/microsoft-worked-with-google-to-bring-pwas-to-the-play-store
https://auth0.com/blog/how-to-manage-javascript-fatigue/
https://github.com/TechEmpower/FrameworkBenchmarks
https://github.com/TechEmpower/FrameworkBenchmarks
https://www.sciencedirect.com/topics/computer-science/traditional-web-application
https://andrejgajdos.com/single-page-application-vs-multiple-page-application/
https://andrejgajdos.com/single-page-application-vs-multiple-page-application/

[12] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong, A. Klepchukov,
S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-Platform, Multi-Language
Benchmark and Measurement Tools for Web 2.0,” p. 6.

[13] M. Mikowski and J. Powell, Single Page Web Applications: JavaScript end-to-end,
1st ed. USA: Manning Publications Co., 2013.

[14] Mozilla, “Document Object Model (DOM) - Web APIs | MDN,” Oct.
2020. [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/API/
Document_Object_Model

[15] B. Krajka, “The difference between Virtual DOM and DOM - React
Kung Fu,” Oct. 2020. [Online]. Available: https://reactkungfu.com/2015/10/
the-difference-between-virtual-dom-and-dom/

[16] CodeAcademy, “React: The Virtual DOM,” Jan. 2021. [Online]. Available:
https://www.codecademy.com/articles/react-virtual-dom

[17] R. Harris, “Virtual DOM is pure overhead,” Jan. 2021. [Online]. Available:
https://svelte.dev/blog/virtual-dom-is-pure-overhead

[18] V. Savkin, “Understanding Angular Ivy: Incremental DOM and
Virtual DOM,” Jan. 2021. [Online]. Available: https://blog.nrwl.io/
understanding-angular-ivy-incremental-dom-and-virtual-dom-243be844bf36

[19] B. Staryga, “SPA SEO: Mission Impossible?” Jan. 2021. [Online]. Available:
https://www.magnolia-cms.com/blog/spa-seo-mission-impossible.html

[20] L. Maldonado, “How Next.js can help improve SEO,” Jan. 2021. [Online]. Available:
https://blog.logrocket.com/how-next-js-can-help-improve-seo/

[21] G. Singhal, “Why Do We Need Single-page Applications?”
Jan. 2021. [Online]. Available: https://www.pluralsight.com/guides/
why-do-we-need-a-single-page-application

[22] S. Jobs, “Steve Jobs introducing PWA in 2007,” Oct. 2020. [Online]. Available:
https://www.youtube.com/watch?v=QvQ9JNm_qWc

[23] A. Russell, “Progressive Web Apps: Escaping Tabs Without Losing
Our Soul,” Dec. 2020. [Online]. Available: https://infrequently.org/2015/06/
progressive-apps-escaping-tabs-without-losing-our-soul/

[24] T. Jankov, “The Essentials of Building Progressive Web App (PWA),” Jan. 2021.
[Online]. Available: https://www.cloudways.com/blog/progressive-web-apps/

[25] I. Malavolta, G. Procaccianti, P. Noorland, and P. Vukmirovic, “Assessing the
Impact of Service Workers on the Energy Efficiency of Progressive Web Apps,” in
2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and
Systems (MOBILESoft). Buenos Aires, Argentina: IEEE, May 2017, pp. 35–45.
[Online]. Available: http://ieeexplore.ieee.org/document/7972716/

[26] A. Osmani, “The App Shell Model,” Jan. 2021. [Online]. Available: https:
//developers.google.com/web/fundamentals/architecture/app-shell

72

https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/
https://reactkungfu.com/2015/10/the-difference-between-virtual-dom-and-dom/
https://www.codecademy.com/articles/react-virtual-dom
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://blog.nrwl.io/understanding-angular-ivy-incremental-dom-and-virtual-dom-243be844bf36
https://blog.nrwl.io/understanding-angular-ivy-incremental-dom-and-virtual-dom-243be844bf36
https://www.magnolia-cms.com/blog/spa-seo-mission-impossible.html
https://blog.logrocket.com/how-next-js-can-help-improve-seo/
https://www.pluralsight.com/guides/why-do-we-need-a-single-page-application
https://www.pluralsight.com/guides/why-do-we-need-a-single-page-application
https://www.youtube.com/watch?v=QvQ9JNm_qWc
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://infrequently.org/2015/06/progressive-apps-escaping-tabs-without-losing-our-soul/
https://www.cloudways.com/blog/progressive-web-apps/
http://ieeexplore.ieee.org/document/7972716/
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell

[27] C. Four, “PWA Stats,” Oct. 2020. [Online]. Available: https://www.pwastats.com/

[28] P. Que, X. Guo, and M. Zhu, “A Comprehensive Comparison between Hybrid and
Native App Paradigms,” in 2016 8th International Conference on Computational In-
telligence and Communication Networks (CICN), Dec. 2016, pp. 611–614, iSSN: 2472-
7555.

[29] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “End Users’ Perception of Hybrid
Mobile Apps in the Google Play Store,” in 2015 IEEE International Conference on
Mobile Services. New York City, NY, USA: IEEE, Jun. 2015, pp. 25–32. [Online].
Available: http://ieeexplore.ieee.org/document/7226668/

[30] W. Wu, “React Native vs Flutter, cross-platform mobile application frameworks,”
p. 34.

[31] “Angular.” [Online]. Available: https://angular.io/

[32] “React – A JavaScript library for building user interfaces.” [Online]. Available:
https://reactjs.org/

[33] eggheadio, “Evan You, creator of Vue.js.” [Online]. Available: https://egghead.io/
podcasts/evan-you-creator-of-vue-js

[34] R. Harris, “Virtual DOM is pure overhead.” [Online]. Available: https:
//svelte.dev/blog/virtual-dom-is-pure-overhead

[35] “Preact.” [Online]. Available: https://preactjs.com/

[36] Malco, “Which To Choose in 2020: NextJS or
Gatsby?” Feb. 2021. [Online]. Available: https://frontend-digest.com/
which-to-choose-in-2020-nextjs-vs-gatsby-1aa7ca279d8a

[37] “Next.js.” [Online]. Available: https://nextjs.org/

[38] “Blitz.js vs. RedwoodJS - LogRocket Blog.” [Online]. Available: https://blog.
logrocket.com/blitz-vs-redwood/

[39] “SvelteKit • The fastest way to build Svelte apps.” [Online]. Available:
https://kit.svelte.dev/

[40] “Nuxt.js - The Intuitive Vue Framework.” [Online]. Available: https://nuxtjs.org/,/

[41] “SolidJS.” [Online]. Available: https://www.solidjs.com

[42] “Marko.” [Online]. Available: https://markojs.com/

[43] “Astro.” [Online]. Available: https://astro.build/

[44] “Kotlin and Android.” [Online]. Available: https://developer.android.com/kotlin

[45] M. Gonsalves, “Evaluating the mobile development frameworks Apache Cordova
and Flutter and their impact on the development process and application
characteristics,” Thesis, Jun. 2019, accepted: 2019-06-25T15:54:41Z. [Online].
Available: http://dspace.calstate.edu/handle/10211.3/211157

73

https://www.pwastats.com/
http://ieeexplore.ieee.org/document/7226668/
https://angular.io/
https://reactjs.org/
https://egghead.io/podcasts/evan-you-creator-of-vue-js
https://egghead.io/podcasts/evan-you-creator-of-vue-js
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://svelte.dev/blog/virtual-dom-is-pure-overhead
https://preactjs.com/
https://frontend-digest.com/which-to-choose-in-2020-nextjs-vs-gatsby-1aa7ca279d8a
https://frontend-digest.com/which-to-choose-in-2020-nextjs-vs-gatsby-1aa7ca279d8a
https://nextjs.org/
https://blog.logrocket.com/blitz-vs-redwood/
https://blog.logrocket.com/blitz-vs-redwood/
https://kit.svelte.dev/
https://nuxtjs.org/, /
https://www.solidjs.com
https://markojs.com/
https://astro.build/
https://developer.android.com/kotlin
http://dspace.calstate.edu/handle/10211.3/211157

[46] “Expo.” [Online]. Available: https://expo.io/

[47] L. Dagne, “Flutter for cross-platform App and SDK development,” p. 37.

[48] J. Gray, “The benchmark handbook for database and transaction systems,” Mergan
Kaufmann, San Mateo, 1993.

[49] M. Vieira, H. Madeira, K. Sachs, and S. Kounev, “Resilience Benchmarking,” in
Resilience Assessment and Evaluation of Computing Systems, K. Wolter, A. Avritzer,
M. Vieira, and A. van Moorsel, Eds. Berlin, Heidelberg: Springer, 2012, pp.
283–301. [Online]. Available: https://doi.org/10.1007/978-3-642-29032-9_14

[50] K. Kanoun and L. Spainhower, Dependability benchmarking for computer systems.
Wiley Online Library, 2008, vol. 72.

[51] R. Almeida, M. Poess, R. Nambiar, I. Patil, and M. Vieira, “How to Advance TPC
Benchmarks with Dependability Aspects,” in Performance Evaluation, Measurement
and Characterization of Complex Systems, ser. Lecture Notes in Computer Science,
R. Nambiar and M. Poess, Eds. Berlin, Heidelberg: Springer, 2011, pp. 57–72.

[52] krausest, “krausest/js-framework-benchmark: A comparison of the perfomance
of a few popular javascript frameworks,” Oct. 2020. [Online]. Available:
https://github.com/krausest/js-framework-benchmark

[53] A. Biørn-Hansen, T. A. Majchrzak, and T.-M. Grønli, “Progressive Web Apps:
The Possible Web-native Unifier for Mobile Development:,” in Proceedings of
the 13th International Conference on Web Information Systems and Technologies.
Porto, Portugal: SCITEPRESS - Science and Technology Publications, 2017, pp.
344–351. [Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.aspx?
doi=10.5220/0006353703440351

[54] R. Fransson, A. Driaguine, and J. Hagelbäck, “Comparing Progressive Web Applica-
tions with Native Android Applications,” p. 59.

[55] S. Manley, M. Seltzer, and M. Courage, “A self-scaling and self-configuring
benchmark for Web servers (extended abstract),” in Proceedings of the 1998 ACM
SIGMETRICS joint international conference on Measurement and modeling of
computer systems, ser. SIGMETRICS ’98/PERFORMANCE ’98. New York, NY,
USA: Association for Computing Machinery, Jun. 1998, pp. 270–271. [Online].
Available: https://doi.org/10.1145/277851.277945

[56] K. L. Johnson and M. M. Misic, “Benchmarking: a tool for Web site
evaluation and improvement,” Internet Research, vol. 9, no. 5, pp. 383–392, Dec.
1999. [Online]. Available: https://www.emerald.com/insight/content/doi/10.1108/
10662249910297787/full/html

[57] E. Cecchet, V. Udayabhanu, T. Wood, and P. Shenoy, “Benchlab: an open testbed
for realistic benchmarking of web applications,” in Proceedings of the 2nd USENIX
conference on Web application development. USENIX Association, 2011, pp. 37–48.

[58] F. S. Tahirshah, “Comparison between Progressive Web App and Regular Web App,”
p. 69.

74

https://expo.io/
https://doi.org/10.1007/978-3-642-29032-9_14
https://github.com/krausest/js-framework-benchmark
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006353703440351
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006353703440351
https://doi.org/10.1145/277851.277945
https://www.emerald.com/insight/content/doi/10.1108/10662249910297787/full/html
https://www.emerald.com/insight/content/doi/10.1108/10662249910297787/full/html

[59] the benchmarker, “the-benchmarker/web-frameworks: Which is the fastest web
framework?” Oct. 2020. [Online]. Available: https://github.com/the-benchmarker/
web-frameworks

[60] mathieuancelin, “mathieuancelin/js-repaint-perfs: Playground to test repaint rates
of JS libs,” Oct. 2020. [Online]. Available: https://github.com/mathieuancelin/
js-repaint-perfs

[61] “gothinkster/realworld,” Jul. 2021, original-date: 2016-02-26T20:49:53Z. [Online].
Available: https://github.com/gothinkster/realworld

[62] “tastejs/PropertyCross,” Jun. 2021, original-date: 2012-09-27T12:41:22Z. [Online].
Available: https://github.com/tastejs/PropertyCross

[63] A. Gambhir and G. Raj, “Analysis of Cache in Service Worker and Performance
Scoring of Progressive Web Application,” in 2018 International Conference on
Advances in Computing and Communication Engineering (ICACCE). Paris: IEEE,
Jun. 2018, pp. 294–299. [Online]. Available: https://ieeexplore.ieee.org/document/
8441715/

[64] R. Fredrikson, “Emulating a Native Mobile Experience with Cross-platform Applica-
tions,” p. 19.

[65] G. de Andrade Cardieri and L. M. Zaina, “Analyzing User Experience in Mobile Web,
Native and Progressive Web Applications: A User and HCI Specialist Perspectives,”
in Proceedings of the 17th Brazilian Symposium on Human Factors in Computing
Systems - IHC 2018. Belém, Brazil: ACM Press, 2018, pp. 1–11. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3274192.3274201

[66] D. Fortunato and J. Bernardino, “Progressive web apps: An alternative to the
native mobile Apps,” in 2018 13th Iberian Conference on Information Systems and
Technologies (CISTI). Caceres: IEEE, Jun. 2018, pp. 1–6. [Online]. Available:
https://ieeexplore.ieee.org/document/8399228/

[67] “Most Used And Downloaded Apps In The World 2021.” [Online]. Available:
https://blog.sagipl.com/most-used-apps/

[68] L. Valdellon, “60 Most Popular Apps on the App Store and Google Play.” [Online].
Available: https://clevertap.com/blog/most-popular-apps/

[69] J. Koetsier, “Here Are The 10 Most Downloaded Apps Of 2020.”
[Online]. Available: https://www.forbes.com/sites/johnkoetsier/2021/01/07/
here-are-the-10-most-downloaded-apps-of-2020/?sh=16eebf445d1a

[70] J. Chan, “Top Apps Worldwide for January 2021 by Downloads.” [Online]. Available:
https://sensortower.com/blog/top-apps-worldwide-january-2021-by-downloads

[71] H. K. Flora, X. Wang, and S. V. Chande, “An Investigation on the Characteristics
of Mobile Applications: A Survey Study,” International Journal of Information
Technology and Computer Science, vol. 6, no. 11, pp. 21–27, Oct. 2014. [Online].
Available: http://www.mecs-press.org/ijitcs/ijitcs-v6-n11/v6n11-3.html

75

https://github.com/the-benchmarker/web-frameworks
https://github.com/the-benchmarker/web-frameworks
https://github.com/mathieuancelin/js-repaint-perfs
https://github.com/mathieuancelin/js-repaint-perfs
https://github.com/gothinkster/realworld
https://github.com/tastejs/PropertyCross
https://ieeexplore.ieee.org/document/8441715/
https://ieeexplore.ieee.org/document/8441715/
http://dl.acm.org/citation.cfm?doid=3274192.3274201
https://ieeexplore.ieee.org/document/8399228/
https://blog.sagipl.com/most-used-apps/
https://clevertap.com/blog/most-popular-apps/
https://www.forbes.com/sites/johnkoetsier/2021/01/07/here-are-the-10-most-downloaded-apps-of-2020/?sh=16eebf445d1a
https://www.forbes.com/sites/johnkoetsier/2021/01/07/here-are-the-10-most-downloaded-apps-of-2020/?sh=16eebf445d1a
https://sensortower.com/blog/top-apps-worldwide-january-2021-by-downloads
http://www.mecs-press.org/ijitcs/ijitcs-v6-n11/v6n11-3.html

[72] “WebdriverIO.” [Online]. Available: https://webdriver.io/

[73] D. Kirkpatrick, “Google: 53% of mobile users abandon sites that take over
3 seconds to load.” [Online]. Available: https://www.marketingdive.com/news/
google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/

[74] Ionic, “Ionic React - Ionic Documentation.” [Online]. Available: https://
ionicframework.com/docs/react

[75] “Guide to Web Authentication.” [Online]. Available: https://webauthn.guide

[76] “[FlatList] FlatList and VirtualizedList Scroll performance is laggy after 30+
rows . · Issue #13413 · facebook/react-native.” [Online]. Available: https:
//github.com/facebook/react-native/issues/13413

[77] “Optimizing Flatlist Configuration · React Native.” [Online]. Available: https:
//reactnative.dev/docs/optimizing-flatlist-configuration

[78] “Appium.” [Online]. Available: http://appium.io/

[79] L. Tung, “Programming languages: Kotlin rises fastest but JavaScript lures
millions more developers.” [Online]. Available: https://www.zdnet.com/article/
programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/

[80] “Top 5 UI Frameworks For Android Automated Testing.” [Online]. Available:
https://saucelabs.com/blog/the-top-5-android-ui-frameworks-for-automated-testing

[81] Brian, “Best Automation Testing Tools for 2021 (Top 15 reviews),”
Feb. 2021. [Online]. Available: https://briananderson2209.medium.com/
best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2

[82] ——, “Top 15 Mobile Testing Tools for 2020 (Latest Update),”
Feb. 2021. [Online]. Available: https://briananderson2209.medium.com/
best-mobile-testing-tools-ios-android-3efb84fa39

[83] “Comparing Mobile Automation Testing Tools: Appium, TestComplete, UI
Automator, SeeTest, Robotium, XCUITest and more.” [Online]. Available:
https://www.altexsoft.com/blog/mobile-automation-testing-tools/

[84] “10 Best Mobile Testing Tools To Automate Testing In 2021,” Jan. 2021. [Online].
Available: https://theqalead.com/tools/mobile-testing-tools/

[85] “15 Best Mobile Testing Tools for Android and iOS in 2021.” [Online]. Available:
https://www.softwaretestinghelp.com/best-mobile-testing-tools/

[86] “_USTop 6 Mobile Testing Tools for Test Creation and Auto-
mation,” Dec. 2019. [Online]. Available: https://bitbar.com/blog/
mobile-testing-tools-for-test-creation-and-automation/

[87] “14 Best Mobile Testing Tools for Android & iOS App [Free/Paid].” [Online].
Available: https://www.guru99.com/mobile-testing-tools.html

76

https://webdriver.io/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://www.marketingdive.com/news/google-53-of-mobile-users-abandon-sites-that-take-over-3-seconds-to-load/426070/
https://ionicframework.com/docs/react
https://ionicframework.com/docs/react
https://webauthn.guide
https://github.com/facebook/react-native/issues/13413
https://github.com/facebook/react-native/issues/13413
https://reactnative.dev/docs/optimizing-flatlist-configuration
https://reactnative.dev/docs/optimizing-flatlist-configuration
http://appium.io/
https://www.zdnet.com/article/programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/
https://www.zdnet.com/article/programming-languages-javascript-now-used-by-12-million-developers-but-kotlin-rises-fastest/
https://saucelabs.com/blog/the-top-5-android-ui-frameworks-for-automated-testing
https://briananderson2209.medium.com/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
https://briananderson2209.medium.com/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
https://briananderson2209.medium.com/best-mobile-testing-tools-ios-android-3efb84fa39
https://briananderson2209.medium.com/best-mobile-testing-tools-ios-android-3efb84fa39
https://www.altexsoft.com/blog/mobile-automation-testing-tools/
https://theqalead.com/tools/mobile-testing-tools/
https://www.softwaretestinghelp.com/best-mobile-testing-tools/
https://bitbar.com/blog/mobile-testing-tools-for-test-creation-and-automation/
https://bitbar.com/blog/mobile-testing-tools-for-test-creation-and-automation/
https://www.guru99.com/mobile-testing-tools.html

[88] “Alternatives to Selenium (Appium) for Mobile Testing | Soft-
wareTestPro.” [Online]. Available: https://www.softwaretestpro.com/
alternatives-to-selenium-appium-for-mobile-testing/

[89] “Typed JavaScript at Any Scale.” [Online]. Available: https://www.typescriptlang.
org/

[90] “Empowering App Development for Developers | Docker.” [Online]. Available:
https://www.docker.com/

[91] “Nginx Proxy Manager.” [Online]. Available: https://nginxproxymanager.com/

[92] “AlDanial/cloc: cloc counts blank lines, comment lines, and physical lines
of source code in many programming languages.” [Online]. Available: https:
//github.com/AlDanial/cloc

[93] “Performance measurement APIs | Node.js v16.1.0 Documentation.” [Online].
Available: https://nodejs.org/api/perf_hooks.html

[94] L. Robinson, “A Complete Guide To Incremental Static Regeneration (ISR)
With Next.js.” [Online]. Available: https://www.smashingmagazine.com/2021/04/
incremental-static-regeneration-nextjs/

[95] B. Vaughn, “bvaughn/react-virtualized,” May 2021, original-date: 2015-11-
03T00:48:07Z. [Online]. Available: https://github.com/bvaughn/react-virtualized

[96] “halfnelson/svelte-it-will-scale: Generate a chart showing svelte’s overhead.” [Online].
Available: https://github.com/halfnelson/svelte-it-will-scale

[97] S. Laurila, “Comparison of JavaScript Bundlers,” p. 55.

[98] “The Top 4 Open Source Tools That Make Appium Easier to
Use | Digital.ai.” [Online]. Available: https://digital.ai/catalyst-blog/
the-top-4-open-source-tools-that-make-appium-easier-to-use

77

https://www.softwaretestpro.com/alternatives-to-selenium-appium-for-mobile-testing/
https://www.softwaretestpro.com/alternatives-to-selenium-appium-for-mobile-testing/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.docker.com/
https://nginxproxymanager.com/
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://nodejs.org/api/perf_hooks.html
https://www.smashingmagazine.com/2021/04/incremental-static-regeneration-nextjs/
https://www.smashingmagazine.com/2021/04/incremental-static-regeneration-nextjs/
https://github.com/bvaughn/react-virtualized
https://github.com/halfnelson/svelte-it-will-scale
https://digital.ai/catalyst-blog/the-top-4-open-source-tools-that-make-appium-easier-to-use
https://digital.ai/catalyst-blog/the-top-4-open-source-tools-that-make-appium-easier-to-use

78

Appendices

79

Appendix A

Application specification

Table A.1: Application elements identifiers and their functional requirements

Component Identifier Functional Requirements
Navbar Navbar_View_Drawer Main container with the navbar content

Navbar_Button_Homepage Link to the homepage
Navbar_Button_Logout Button to logout from the application and redir-

ect to the Landing
Navbar_Row_
<Component.label>

Link to each authenticated component page

Landing Landing_View_Main Main container with Landing content
Landing_Text_Title Paragraph with application title:

Savery-[Development Tool Name]
Landing_Button_
AskPermissions

Button that once clicked asks for the required
permissions (geolocation, camera and notifica-
tions)

Landing_Text_
PermissionsGranted

Paragraph that renders after the permissions are
granted. Color green and must say "All permis-
sions granted"

Landing_Button_GoToLogin Link that redirects to login page
Login Login_View_Main Main container with Login content

Login_Input_Username Text input field to type username
Login_Input_Password Password input field to type password
Login_Button_Submit Button that once clicked should send an HTTP

request to the backend with the username and
password typed. If a JWT is returned should
redirect to Homepage

Homepage Homepage_View_Main Main container with Homepage content
Homepage_Text_
NeedPermissions

Paragraph that renders "All permissions" if re-
quired permissions granted, "Permissions not
granted" otherwise

Homepage_View_
Components

Container with the list of available components

81

Appendix A

Homepage_Row_
<Component.label>

Paragraph that renders each component label
(e.g., Camera, Carousel)

Camera Camera_View_Main Main container with Camera content
Camera_Switch_
ToggleCamera

Switch button that hides/displays camera feed

Camera_View_
CameraAndImage

Container with Camera feed, button and an im-
age

Camera_Video_Camera Container that renders camera feed
Camera_Button_TakePhoto Button that once clicked takes a picture from

camera feed and renders it on container below
Camera_Image_
FromTakePhoto

Container that renders image from camera feed

Geolocation Geolocation_View_Main Main container with Geolocation content
Geolocation_Text_Waiting Paragraph with text "Waiting for geolocation"

is displayed while querying geolocation
Geolocation_Text_Success Paragraph that replaces the previous one with

user location once this value is available. Should
say "[latitude], [longitude] with accuracy: [ac-
curacy]"

File Access Fileaccess_View_Main Main container with File Access content
Fileaccess_Button_Upload Button that once clicked open native image

picker to select an image from the file system.
Selected image should render in container below.

Fileaccess_Image_Uploaded Container that renders selected image from the
file system.

Notifications Notifications_View_Main Main container with File Access content
Notifications_Button_Local Button that once clicked sends a native notific-

ation to the device
Background SyncBackgroundsync_View_Main Main container with Background Sync content

Backgroundsync_Text_
ConnectionStatus

Paragraph that tracks the user connection. If
the user has an internet connection should say
"You are currently online!" in green. If the user
is offline should say "You are currently offline."
in red.

Backgroundsync_Button_
FetchFromWeb

Button that once clicked should render a random
image from the web below

Backgroundsync_Button_
FetchFromCache

Button that once clicked should render a cached
image below

Backgroundsync_Image_
FromWeb

Container that renders random image from web

Backgroundsync_Image_
FromCache

Container that renders cached image

Operation Operation_View_Main Main container with Operation content
Operation_Button_
CreateSmall

Button that once clicked renders 100 rows below
with random labels created on demand

82

Application specification

Operation_Button_CreateBig Button that once clicked renders 1000 rows be-
low with random labels created on demand

Operation_Button_Swap Button that once clicked swaps the second row
and the penultimate row

Operation_Button_Clear Button that once clicked clears the list of rows
Operation_Scroll_Rows Container that contains the list of rows
Operation_View_Item<id> View that contain each row and displays its ID

and label

83

This page is intentionally left blank.

Appendix B

Example of one of the
implementations (preact) that follow
the Application specification

Next.js Application screenshots:

85

Appendix B

(a) Landing (b) Login

Figure B.1: Unauthenticated components of preact implementation (web application)

(a) Unauthenticated navbar

86

Example of one of the implementations (preact) that follow the Application specification

(a) Homepage (b) Authenticated navbar (c) Camera

(d) Geolocation (e) File Access

(f) Notifications (g) Feed

Figure B.3: Part 1 of authenticated components of preact implementation (web applica-
tion)

87

Appendix B

(a) Carousel (b) Background Sync

(c) Operation

Figure B.4: Part 2 of authenticated components of preact implementation (web applica-
tion)

88

Appendix C

Configuration file for Testing and
Measurement Tool

Listing C.1: Configuration file for each execution of the Testing and Measurement Tool

1 {
2 "app": {//data related to the application under test
3 "name": "nextjs", //application name
4 "type": "web", //application type (web, hybrid or native)
5 "url": "https://nextjs.vitamin-server.dei.uc.pt", //url or application

is running in case of web applications, apk location otherwise
6 "packageName": "com.android.chrome", //package name to gather the CPU

Usage
7 "loginInfo": {//data required for apps (e.g., credentials to login)
8 "username": "user1",
9 "password": "pass1"

10 }
11 },
12 "run": {//data related to the run/execution
13 "times": 15,//maximum number of times application should run (tmt will

check before starting the execution if this number was already
reached)

14 "reboot": true, //tmt will reboot device after execution
15 "warmup": true, //if true warmup period tests will execute first
16 "timeout": 10000,//time in milliseconds until tests timeout
17 "ticker": {//data related to measurements gathering
18 "active": true, //if the execution should gather measurements (will

be false for functional tests and true for benchmark campaign)
19 "interval": 200//interval between each measure in milliseconds
20 },
21 "iterations": 1,//number of runs in a row. does not matter if reboot

is true
22 "record": false, //record the screen during execution

89

Chapter 6

23 "needPermissions": true, //the run needs permissions (if true, warm-up
period tests will accept them)

24 "allComponents": true, //if run should test all components
25 "components": {//data related to components: i) to configure which

components should run if allComponents is false; ii) define the
components order in the execution

26 "camera": {
27 "order": 6,
28 "active": false
29 },
30 "geolocation": {
31 "order": 4,
32 "active": false
33 },
34 "fileaccess": {
35 "order": 2,
36 "active": false
37 },
38 "notifications": {
39 "order": 5,
40 "active": false
41 },
42 "feed": {
43 "order": 3,
44 "active": false
45 },
46 "carousel": {
47 "order": 7,
48 "active": false
49 },
50 "backgroundsync": {
51 "order": 1,
52 "active": false
53 },
54 "operation": {
55 "order": 8,
56 "active": false
57 }
58 }
59 },
60 "device": {//data related to the target device
61 "deviceName": "FRD-L09",
62 "platformVersion": "7",
63 "os": "android",
64 }
65 }

90

